Sprejemniki sončne energije v okviru tehniških dni

Diplomsko delo

Kandidat: Darinka Petrina

Ljubljana, junij 2016
Zahvala

Zahvaljujem se mentorju doc. dr. Janezu Jamšku za strokovno pomoč, nasvete in usmerjanje pri nastajanju diplomskega dela.

Iskrena hvala gre moji družini, še posebej mojemu možu Andreju za vso podporo, nesebično pomoč in optimistično spodbudo v času nastajanja diplomske naloge.

Zahvaljujem se tudi g. Andreju Muhiču in profesорici MA-TE na OŠ Dolenjske Toplice ga. Heleni Jordan za strokovno pomoč in koriste nasvete pri nastajanju diplomskega dela.
POVZETEK

V diplomskem delu je predstavljen pomen rabe obnovljivih virov, predvsem sončne energije, ki so ključni za našo prihodnost. Nekateri načini izkoriščanja sončne energije (s sončnimi celicami) so zelo dobro uveljavljeni in posledično tudi vključeni v učni načrt tehnike in tehnologije, drugi, kot so na primer toplotni sprejemniki sončne energije, pa jim ne posvečamo dovolj pozornosti navkljub njihovi razširjenosti, uporabnosti in okolju prijazni tehnologiji. Zato želimo v diplomskem delu predstaviti izkoriščanje sončne energije v okviru tehniškega izobraževanja. V ta namen je najprej predstavljena izdelava ploščatega in vakuumskega modela sprejemnika sončne energije z vso potrebno tehniško in tehnološko dokumentacijo. V nadaljevanju pa je predstavljen predlog učne priprave za tehniški dan za 9. razred devetletne osnovne šole na tematiko sprejemniki sončne energije z uporabo induktivne metode poučevanja. Tekom tehniškega dne učenci izdelajo model ploščatega oziroma vakuumskega sprejemnika sončne energije, ga povežejo v solarni sistem ter preizkusijo njegovo delovanje. Učenci so aktivno vključeni v proces, učitelj pa jih po potrebi usmerja ter jim nudi pomoč. Temeljni cilj predlaganega tehniškega dne je, da učenci spoznajo, kako s sprejemniki sončne energije izkoriščamo sončno energijo in s primerjavo različnih tipov sprejemnika sončne energije spoznajo razliko v učinkovitosti ter tako upravičijo naprednejšo tehnologijo.

KLJUČNE BESEDE:

Obnovljivi viri energije, sončna energija, sprejemniki sončne energije, tehnika in tehnologija, tehniški dan, učenje z vodenim odkrivanjem.
Solar thermal collectors at Design and technology activity days

Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar energy within technology classes. For this purpose it describes the process of making flat and vacuum solar thermal collector model with all necessary technical and technological documentation. In addition to that, a proposed lesson plan for a Design and technology activity day – solar thermal collectors using inductive teaching method for the 9th grade pupils in primary school - is included. During the Design and technology activity day pupils make a model of flat or vacuum solar thermal collector, assemble it in the solar thermal system and test its function. Pupils are actively participating in the process while teacher has a role of a mentor. The main aim of the proposed Design and technology activity day is to show the pupils how to use solar energy by solar thermal collectors and how to determine the difference of solar thermal collectors efficiency. Aiming at the end goal pupils to be able to choose the more suitable advanced technology.

KEY WORDS:

Renewable sources of energy, solar energy, solar thermal collectors, design and technology, design and technology activity day, guided research approach.
IZDELEK

1 UVOD..1
 1.1 OPREDELITEV PODROČJA IN OPIS PROBLEMA..1
 1.2 NAMEN IN CILJI NALOGE ...2
 1.3 PREDVIDENE METODE RAZISKOVANJA ...3
 1.4 PREGLED VSEBINE OSTALIH POGlavIJ ...3

2 ENERGIJA PRIHODNOSTI ..5
 2.1 OBNOVLJIVI VIRI ENERGije ...7
 2.2 O SONČNI ENERGIJI ..9
 2.2.1 Sončno sevanje in obsevanje ..10
 2.2.2 Izkoriščanje sončne energije..13

3 SPREJEMNIKI SONČNE ENERGIJE ..18
 3.1 DEFINICIJA SSE ..19
 3.2 PRINCIP DELOVANJA SSE ...20
 3.3 ZGODOVINSKI PREGLED SSE ...22
 3.4 SOLARNI SISTEM ...23
 3.5 VRSTE SSE ...25
 3.5.1 Ploščati SSE ..25
 3.5.2 Vakuumski cevni SSE ..28
 3.6 POSTAVITEV IN NAKLON SSE ..33

4 MODEL SSE ..35
 4.1 PREGLED OBSTOJEČIH MODELOV SSE ..35
 4.1.1 Slovenski viri ..35
 4.1.2 Tuji viri ...38
 4.2 IZDELAVA MODELA ..45
 4.2.1 Koncept modela SSE ...45
 4.2.2 Shema modela SSE ..49
 4.2.3 Izdelava ploščatega modela SSE ..50
 4.2.4 Izdelava vakuumskega modela SSE ..51
 4.2.5 Model solarnega sistema ..51
 4.2.6 Preizkus delovanja modela solarnega sistema ..52

5 TEHNIŠKI DAN SSE ..56
 5.1 NAVEZAVA NA UČNI NAČRT ...56
 5.2 UMESTITEV SSE V TEHNIŠKO IZOBRAŽEVANJE ..57
 5.3 IZBIRA STRATEGIJE/METODE DELA ...58
 5.4 DELOVNA NALOGE ..58
 5.5 INDIKTIVNE METODE POUČEVANJA ...59
 5.5.1 Učenje z vodenim odkrivanjem ...60
 5.6 PREDLOG IZVEDBE TEHNIŠKEGA DNE ..61

6 DISKUSIJA ...64

7 ZAKLJUČEK ..66

8 LITERATURA IN VIRI ..67

9 STVARNO KAZALO ..73

10 PRILOGE ..1
 10.1 PREGLED UN ..1
 10.2 UČNA PRIPRAVA ..III

III
NOMENKLATURA

W/m^2 gostota moči sevanja
kWh/m^2 energija sevanja

AKRONIMI IN OKRAJŠAVE

OVE Obnovljivi viri energije
SSE Sprejemnik sončne energije
HT Hranilnik toplote
EU Evropska Unija
UN Učni načrt
TIT Tehnika in tehnologija
TD Tehniški dan
OŠ Osnovna šola
SURS Statistični urad Republike Slovenije
BDP Bruto domači proizvod
PT Fotovoltaični…
ZDA Združene države Amerike
DDV Davek na dodano vrednost
JV Jugovzhod
JZ Jugozahod
UP Učna priprava
PV Problemsko vprašanje
1 UVOD

Energija – naravna dobrina, na voljo v izobilju, poceni, vedno na razpolago in za vse naše potrebe po njej. Včasih je zadostna oskrba z energijo pomenila preživetje, dandanes pa je to tako samo po sebi umevno, da na to niti ne pomislimo. Ko se prhamo s toplo vodo, ko kuhamo večerjo, ko se v mrljih zimskih dneh zjutraj zbudimo v prijetno topli sobi, ko sredi vročih poletnih dni vključimo klimo, ko nabiramo kilometre z avtom ipd., verjetno ne razmišljamo o energiji, ki je bila potrebna, da smo deležni opisanega. Pa bi morali, saj večino energije (približno 65 %), ki jo človeštvo porabi, pridobimo z uporabo fosilnih goriv, ki so velik onesnaževalec našega planeta in posledično uničujejo našo prihodnost. Obenem pa imamo na voljo nove tehnologije, ki nam z izkoriščanjem obnovljivih virov energije (OVE) nudijo nove možnosti, da zmanjšamo odvisnost od fosilnih goriv in pozitivno prispevamo k varovanju okolja.

1.1 OPREDELITEV PODROČJA IN OPIS PROBLEMA

Lesna in druga trdna biomasa je najpomembnejši obnovljiv vir energije (OVE) v Sloveniji, kar je pričakovano glede na izjemno pokritost z gozdovi. Drugi naš najpomembnejši OVE je hidroenergija, saj ima država nadpovprečno vodno bogastvo. Več spodbude potrebujejo tehnologije OVE, ki na trg šele vstopajo oziroma še niso tako uveljavljene, kot so npr. tehnologije za oskrbo s toploto iz OVE ali z drugimi besedami toplotni solarni sistemi, s katerimi s sončno energijo segrevamo snov, ki v sistemu prenaša toploto. Kot zanimivost naj omenimo dejstvo, da tovrstne sisteme uvrščajo na vrh dvajsetih najpomembnejših tehnologij za znižanje emisij toplotnih plinov brez stranskih učinkov na okolje. Pri tem je pomembno, da že danes obstaja več tehnologij, s katerimi uporabljamo toploto, proizvedeno s toplotnimi solarnimi sistemi, tudi za hlajenje stavb. Najbolj razširjeni pa so sistemi za pripravo tople sanitarne vode v družinskih stavbah. Uporabljamo pa jih tudi za ogrevanje bazenov, stavb in za proizvodnjo procesne toplote. Osnovni element teh sistemov so sprejemniki sončne energije (SSE) in hranilniki toplote (HT).
Prihodnost družbe temelji na visokem deležu OVE pri oskrbi z energijo. Direktiva Evropske unije (EU) med drugimi zahteva tudi od Slovenije povečanje uporabe OVE za proizvodnjo električne energije, toplote in hladu. V vzgojno-izobraževalnem procesu, natančneje v okviru tehniškega izobraževanja na osnovnošolski ravni, je omenjena problematika vključena v učni načrt (UN) tehnike in tehnologije (TIT), vendar v zelo skopi obiliki. Omeni se samo možnosti za alternativno pridobivanje električne energije. Ostali načini izkoriščanja sončne energije niso niti omenjeni. Kljub temu da ima Slovenija razmeroma dolgo tradicijo gradnje SSE, da so le-ti zelo razširjeni in uporabni ter nimajo škodljivih vplivov na okolje, niso vključeni v UN. Zato je posledično tudi nepoznavanje te tehnologije med učenci.

Veliko solarnih sistemov je dovršenih in ekonomsko upravičenih. Njim ob bok lahko postavimo sisteme in naprave, ki koristijo direktno sončno sevanje za oskrbo s toploto in kot podporo k ogrevanju. Omenjena dejstva upravičujejo smiselnost seznanjanja učencev z možnostjo uporabe sončne energije. Ta je človeku prijazna in dostopna širši populaciji v tako rekoč neomejeni količini. Prav tako s SSE zaradi njihove splošne razširjenosti, cenovne ugodnosti, velike uporabnosti kot tudi okolju prijazne tehnologije.

1.2 NAMEN IN CILJI NALOGE

Namen diplomskega dela je aktualizacija tehniških dni z vsebino OVE. Pri tem se omejimo predvsem na sončno energijo in srednje temperaturne solarno ogrevalne sisteme. Natančneje na sisteme za pridobivanje tople potrošne vode oziroma na SSE, s ciljem, učence preko aktivnega dela (izgradnja modela SSE, preučevanje delovanja s preizkušanjem in uporabo) vpeljati v tehnologijo SSE.

Cilji (C) diplomskega dela:

C1: Podati pregled obnovljivih virov energije in določiti smiselnost uporabe sončne energije za področje Slovenije.
C2: Podati razvoj in pregled obstoječih tehnologij za izkoriščanje sončne energije.
C3: Določiti smiselni model sprejemnika sončne energije za uporabo v okviru tehniškega izobraževanja v osnovni šoli.
C4: Podati predlog izvedbe tehniškega dne na tematiko sprejemniki sončne energije z uporabo učenja z odkrivanjem.

C5: Izdelati tehniško in tehnološko dokumentacijo za izdelavo uporabljenih modelov sprejemnikov sončne energije v okviru tehniškega dneva.

1.3 PREDVIDENE METODE RAZISKOVANJA

V delu smo uporabili naslednje metode dela:
- deskriptivno (opisno) metodo dela,
- zbiranje in študij virov in literature,
- tabelarični način prikaza podatkov,
- slikovni način prikaza podatkov,
- proučevanje tehnike dokumentacije načrtov,
- dokumentiranje posameznih korakov izdelave modela solarnega sistema s ploščatim in vakuumskim SSE.

V diplomskem delu bomo sprva proučili dokumente in strokovno literaturo ter preučili, kaj je sprejemnik sončne energije, kje, kdaj in za kaj se uporablja ter kako je sestavljen. Z deskriptivno (opisno) metodo dela bomo prikazali lastnosti, uporabo, sestavne elemente in izdelavo modela solarnega sistema s ploščatim in vakuumskim SSE. Sestavili bomo primer predloga za izvedbo tehniškega dne kot samostojno učno izdelavo modela SSE, povezanega v solarni sistem. Predlog učne priprave bo temeljil na strategiji delovne naloge in strategiji učenja z odkrivanjem.

1.4 PREGLED VSEBINE OSTALIH POGLAVIJ

- V teoretičnem delu je najprej predstavljeno, kako bo z oskrbo in rabo energije v prihodnosti. Pri tem smo poudarili pomen obnovljivih virov energije, predvsem sončne energije. Predstavili smo naprave in sisteme, ki jih lahko uporabljamo za pretvarjanje sončnega obsevanja v toploto ali elektriko.

- V tretjem poglavju se seznanimo s SSE, ki so glavni element solarnih sistemov za pretvarjanje sončne energije v toploto. Opredelimo pojem SSE, spoznamo
njegove sestavne dele, njihove funkcije ter delovanje kot celoto. Dotaknemo se razvoja sprejemnikov skozi zgodovino, v kateri spoznamo osnovne tipe SSE, njihovo raznolikost in uporabnost ter zaključimo poglavje s pomembnima pogojema za njihovo optimalno delovanje, kot sta lega in naklon.

- Za uporabo v okviru tehnškega izobraževanja v osnovni šoli je potrebno določiti smiselni model SSE. V četrtem poglavju smo za to podali pregled obstoječih modelov SSE, koncept zasnove ploščatega in vakuumskega modela SSE ter nazadnje njuna izdelava in preizkus delovanja. Za izdelovanje modelov SSE je priložena potrebna tehniška in tehnološka dokumentacija.

- V zaključnem delu, tj. šesto in sedmo poglavje, predstavimo, v kolikšni meri smo dosegli zastavljene cilje (C1-C5) ter podamo povzetek in sklepne misli diplomskega dela.
2 ENERGIJA PRIHODNOSTI

Energija je življenjska sila naše družbe. Razvoj slednje ne bi bil mogoč, če se človek ne bi naučil uporabljati naravnih virov kot energijske vire. Nekoč je zadostna oskrba z energijo pomenila preživetje. Dandanes pa se tega premalo zavedamo, ker je ta naravna dobrina na razpolago v izobilju, vedno in za vse naše potrebe. A se tudi to spreminja. Energija bo v prihodnje postajala vedno bolj cenjena in nenadomestljiva človeška dobrina. Res je, da je intenzivna uporaba fosilnih goriv, zlasti v zadnjih dveh stoletjih, omogočila hiter razvoj človeštva, slika 2.1, vendar so s tovrstno energijo povezane tudi negativne posledice.

Slika 2.1: Naraščanje rabe energije v zadnjih 150 letih [1, str. 1].

Prihajajo namreč opozorila v obliki podnebnih sprememb, povečanja svetovne porabe energije (do leta 2035 v povprečju kar za 39 %) in s tem tudi ogrožene državne blaginje. Globalne klimatske spremembe, slabša kvaliteta zraka, spremembe na favni1 in flori2, vodah in pokrajinah so v veliki meri posledica uporabe fosilnih goriv (nafte, premoga, plina). Hkrati pa Evropa in svet na sploh potrebujeta vedno več energije. Problem se kaže tudi v zalogah naravnih neobnovljivih virov, ker so omejene in čedalje težje dosegljive. Posledično bodo tudi cene energetov vedno višje, slika 2.2, in tehnologije za črpanje omenjenih zalog vedno bolj zahtevne [1-4].

1 Favna - živali, ki živijo na določenem področju, živalstvo [5].
2 Flora - rastline, ki rastejo na določenem področju, rastlinstvo [5].
Slika 2.2: Gibanje cen energentov ter cene goriv in energije v Sloveniji v obdobju 2006 - 2011 [6].

Porabniki bomo posledično morali plačati škodo, ki jo povzročamo naravnemu okolju. Glede na podatke Statističnega urada Republike Slovenije (SURS) je tudi Slovenija ena izmed držav, slika 2.3, ki v največji meri uporablja vire, kot so fosilna goriva (naftni proizvodi, zemeljski plin) ter električna energija, katere je največ (39 %) proizvedene v jedrski elektrarni (36 % v termoelektrarnah...) [7].

Slika 2.3: Poraba energije, Slovenija, 2011 [7].

Zaradi vsega omenjenega so se sprožile razprave o oskrbi z energijo v prihodnosti. Potrebno bo poiskati nove energetske tehnologije in »nove« energijske vire, sicer bo na
Zemlji preživelo precej manj ljudi, kakor jih živi sedaj. Razvoj neke družbe in gospodarstva pa ni nujno pogojen z večanjem rabe energije, temveč z učinkovito in varčno rabo ter tehnoškim napredkom. Pri tem bodo pridobili na pomenu alternativni oziroma OVE, kajti le-ti presegajo trenutne in prihodnje potrebe človeštva po energiji. Eden izmed možnih izidov pri oskrbi z energijo je prikazan na sliki 2.4, s katere je razvidno, da se bo v prihodnosti najbolj povečal delež pridobivanja energije s pomočjo Sonca, upadla pa bo poraba omejenih virov energije [8].

Slika 2.4: Eden od možnih scenarijev oskrbe človeštva z energijo [8, str. 7].

2.1 OBNOVLJIVI VIRI ENERGIJE

Pojem alternativni viri energije označuje vse oblike in načine koriščenja energije, ki so obnovljivi in so alternativa obstoječim konvencionalnim oblikam. To so primarni viri, ki jih je človek s pridom izkoriščal že v davni preteklosti. Njihove zaloge so neizčrpne, ker izhajajo iz stalnih naravnih procesov, kot so sončno sevanje, veter, vodotoki, fotosinteza, s katero rastline gradijo biomaso, bibavica in zemeljski toplotni tokovi.

Večina OVE (energija vode, vetra in biomase) izvira iz sončnega sevanja, vendar pa Sonce ni edini naravni vir. Glede na izvor med OVE uvrščamo tudi planetarno ener gigs in geotermalno energijo. Vse te obnovljive vire z različno tehnologijo in napravami

3 Primarni viri energije so energetski proizvodi, ki so pridobljeni ali zajeti neposredno iz naravnih virov (premog, surova nafta, plin iz vršine, uran iz rudnika, drva iz gozda, sončno sevanje, voda, veter) [9-10].
4 Sončno sevanje je toplotni tok, ki ga Sonce nenehno oddaja v vesolje in ga lahko spremenimo s toploto ali elektriko, v naravi pa povzroča nastanek vetra, valov, vodne energije in biomase [1, str. 32, 7, str. 10].
5 Planetarna energija je energija Lune in Sonca, ki skupaj s kinetično energijo Zemlje povzročata periodično nastajanje plime in oseke [1, str. 32].
6 Geotermalna energija je toplota zemlje, ki je v glavnem posledica razpada radioaktivnih elementov v njeni skorji in zgornjem plašču. [11, str. 96].
pretvarjamo v druge oblike energije, potrebne v vsakdanjem življenju – električno energijo, toploto ter tekoča goriva za pogon vozil [1, 8].

Prihodnost družbe temelji na visokem deležu OVE pri oskrbi z energijo. Cilj Slovenije je doseči 25 % delež OVE v končni rabi energije7 in najmanj 10 % delež OVE v prometu do leta 2020. S strani Evropske komisije je ocenjeno, da bo doseganje zastavljenih ciljev v podnebno-energetskem svežnju do leta 2020 pomenilo zmanjšanje emisij ogljikovega dioksida v višini 600 do 900 milijonov ton letno, znanjske porabe fosilnih goriv za 200 do 300 milijonov ton letno, znanjske odvisnosti EU od uvoženih fosilnih goriv ter s tem povečanje stabilnosti dobave energije v EU ter večje spodbude za razvoj visokotehnoloških industrij z novimi gospodarskimi priložnostmi in delovnimi mestmi. Da bo ciljni, 25-odstotni, delež OVE v končni rabi energije lahko dosežen, bo potrebno povečati izrabo hidroenergije (sanacija in povečanje obstoječih hidroelektrarn in izgradnja novih – dokončanje savske verige) in lesne biomase za polovico, preostalih virov energije pa za več kot dvakrat, in še to v primeru, če bo hkrati raba energije ostala na sedanji ravni, za kar bo potrebno izdatno spodbujanje ukrepov učinkovite rabe

7 Končna energija je energija, ki jo rabijo končni potrošniki (v zgradbah, industriji, prometu…). Pridobimo jo iz goriv z energetskimi pretvorbami in jo prenesemo k potrošniku [1, str. 1].
energije in sprememb strukture potrošnje, obsežnejše in raznovrstnejše spodbujanje za krepitev finančnih ter strokovnih zmogljivosti za razvojni zagon [11-1, 17-19].

2.2 O SONČNI ENERGIJI

neobnovljivi, v prihodnosti stalno na razpolago. Zato je več kot priporočljivo, da sončno energijo, ki je na voljo v neizmernih količinah, brezplačno in v naravi ustvarja nove in zelo različne oblike OVE, čim bolje izkoristimo [1, 8, 15, 20-24].

Slika 2.5: Potenciali primarnih energetov in velikost globalne letne porabe energije [15, str. 31].

2.2.1 Sončno sevanje in obsevanje

Sončna energija prihaja na Zemljo v obliki elektromagnetnega valovanja, ki ga imenujemo sončno sevanje. Podobno je sevanju črnega telesa s temperaturo okoli 6000 K, zato odbija ultravijolično sevanje, vidno svetlobo in infrardeče sevanje. Sončno sevanje se v stiku z atmosfero in na površini Zemlje pretvori v toploto, povzroča pa tudi nastanek vetrov in valov, energijo vode in biomaso, slika 2.6. Na zunanjem robu Zemeljine atmosfere je sončno sevanje skoraj (zaradi spremembe razdalje med Soncem in Zemljo) enakomerno preko celega leta. Ob prehodu skozi ozračje (atmosfero) pa se del sončnih žarkov odbije (reflektira) na oblakih oziroma se razprši (siplje) na delcih v zraku in plinskih molekulah, del pa vpijejo (absorbirajo) delci in nekateri plini, ki sestavljajo zrak. Ob tem se spremeni tudi narava sončnega sevanja, kajti le del sončnega sevanja dospe na površino Zemlje direktno v obliki žarkov (to sevanje imenujemo direktno sončno sevanje). To se zgodi, ko je nebo jasno. Če pa je nebo delno ali v celoti prekrito, se direktno sončno sevanje razprši (to sevanje imenujemo difuzno sončno sevanje). Enostavno sončno sevanje se na naravnih in grajenih površinah odbijeta in ustvarita odbito sončno sevanje, katerega količina je odvisna od odbojnosti površin. Celotno sončno sevanje na površini Zemlje, ki ga sestavljajo direktno, difuzno in odbito sončno sevanje, imenujemo globalno sončno sevanje. Kljub temu da Zemlja
prestreže le majhen del te energije, ta velikokrat presega količino energije, ki jo zagotavljajo fosilna in jedrska goriva. Vpadlo sončno sevanje v eni uri je večje kot so celotne zemeljske potrebe po energiji. Letna količina sončne energije, ki prispe na površino Zemlje, je več kot 8.000 krat večja od svetovne porabe po primarni energiji. V Sloveniji pa celotni potencial sončnega sevanja zadošča za več kot 300 kratno pokritje lastnih potreb. Izkoriščamo pa manj kot 3 % ocenjenega razpoložljivega potenciala [23].

Slika 2.6: Potek pretvarjanje sončnega sevanja [1, str. 31].

8 Vpadno sončno sevanje je sončno sevanje, ki vpada da dano ploskev [28].
Tako sončno sevanje kot obsevanje sta osnovna meteorološka podatka, ki pretežno vplivata na podnebje in sta odvisna od lokalnih podnebnih in geografskih značilnosti. Po svojem vplivu na energijo je najpomembnejši parameter trajanje sončnega obsevanja. Ta podatek nam pove, koliko časa je nek kraj neovirano oziroma neposredno obsevalo Sonce in je običajno podan v urah. Glede na to, da ima leto 8760 ur, je mogoče letno trajanje sonca polovico tega časa, tj. 4380 ur. V resnici je to število še manjše, in sicer za kraje v Sloveniji med 1600 in 2000 urami. Za izkoriščanje sončne energije pa je spodbudno opažanje, da trajanje sonca v zadnjih desetletjih narašča. Za praktično rabo pa so potrebne podrobnejše baze podatkov o sončnem obsevanju, ki so odvisne od letnega časa (ki je posledica različnega sončnega sevanja), lokalnih klimatskih razmer v atmosferi ter lokalnih naravnih ovir pokrajine. Skozi leto vpliv Sonca dokaj niha, slika 2.7. Okoli 75% letnega sončnega obsevanja je na voljo med aprilom in oktobrom, približno 200 do 250 kWh/m² pa v zimskem času. Največ sončnega obsevanja poleti je v Portorožu, pozimi pa izstopa Kredarica, saj nižine pogosto prekrivajo nizki oblaki in meglja. Prav tako so vrednosti trajanja sončnega obsevanja lahko med posameznimi kraji, ki so komaj nekaj sto metrov narazen, včasih zelo različne. To pa zato, ker na trajanje sončnega obsevanja v nekem kraju vplivajo poleg reliefnih razmer in letnih časov predvsem meglja in oblaki, ki so tudi odvisni od prej navedenih razmer, zlasti pa od reliefa ožje okolice. Posamezne vrednosti sončnega obsevanja v nekem izbranem obdobju so precej naključne, na splošno pa so pomembnejše klimatske vrednosti, ki so povprečja dvajsetletnih opazovanj. Katere podatke bomo potrebovali pri delu, je odvisno od vrste potreb in dejavnosti, ki so seveda zelo različne. Za lastnika hiše s steklenimi stenami proti jugovzhodu so najbolj pomembne dopoldanske ure trajanja sončnega obsevanja v zimskih mesecih, za upravo odrtega bazena v turističnem kraju pa povprečna trajanja sončnega obsevanja in popoldanske ur poleti. Za ogrevanje prostorov z aktivnimi sistemii obdobje med oktobrom in aprilom, za pripravo tople sanitarne vode s SSE pa poletni čas. Ob navedenih podatkih ni težko ugotoviti, da ogrevanje prostorov z aktivnimi sistemi v naših vremenskih razmerah ni ekonomično, priprava tople sanitarne vode v poletnem času pa je lahko učinkovita [1, 8, 20].

9 Aktivni solarni sistemi ali srednje temperaturni solarni sistemi so sistemi, ki pretvarjajo sončno obsevanje v toploto s pomočjo sprejemnikov sončne energije in s prenosno tekočino prenašajo toploto v hranilnike toplote, ti pa so povezani s sistemi za segrevanje sanitarne vode ali ogrevalnimi sistemi [22].
2.2.2 Izkoriščanje sončne energije

Sončno obsevanje nam že od nekdaj zagotavlja topoto in svetlobo, na voljo je v neizmernih količinah in povsod, zato je izkoriščanje sončne energije področje, ki je zelo perspektivno in ki v sebi skriva še veliko potenciala. Da bi bilo izkoriščanje optimalno, moramo vedeti, zakaj, kako in kje bomo to energijo pridobivali in jo uporabljali. Za razliko od konvencionalnih goriv oz. virov, ki smo jih vajeni, s sončno energijo nismo oskrbovani preko žic ali pipe. Vedeti moramo tudi, koliko energije potrebujemo in
koliko Sonca nam je na razpolago, ker je, kot smo omenili, količina sončne energije odvisna od letnega časa in od kraja, v katerem živimo. Sončno obsevanje z različnimi napravami in sistem največkrat spreminjamo v toploto in električno energijo. Za delovanje teh naprav je značilno, da imajo minimalni vpliv na kakovost okolja, vir energije so zastonj in vsem na razpolago, naprave, s katerimi se pretvarja sončno sevanje in druge OVE, pa imajo razmeroma visoko učinkovitost. Oviro za njihovo širšo uveljavitev predstavljava spreminjanje in gostota sončnega sevanja. Spreminjanje sončnega sevanja v dnevu in letu, zaradi česar so za nepretrgano oskrbo z energijo potrebni hranilniki, kar podraži sistem. Posledično bo v prihodnosti izkoriščanje sončne energije močno odvisno od tehnologij za shranjevanje toplote in električne energije. Druga lastnost, ki tudi ovira uveljavitev, je nizka gostota sončnega sevanja, zaradi česar so potrebne velike naprave. Vendar kljub temu bi za oskrbo Slovenije z energijo zadoščala površina naprav, ki bi bila bistveno manjša od površine stavb, v katerih živimo [8].

Naprave in sistemi, ki se uporabljajo za pretvarjanje sončnega obsevanja, so med seboj razlikujejo po zasnovi in funkciji. Posledično je različna tudi njihova razdelitev. Razvršča se jih lahko po velikosti SSE, ker merijo od nekaj m\(^2\) do deset tisoč m\(^2\), ali po obliki energije, v katero pretvarjajo sončno obsevanje (npr. toploto, hlad, mehansko delo, električno energijo). Največkrat gre za toplotne naprave in stroje, v katerih se s pretvarjanjem sončnega obsevanja pridobiva toploto. Ker je za njihovo delovanje potrebna toplota na različnih temperaturnih nivojih, se jih pogosto razvršča glede na temperaturni nivo proizvedene toplote, slika 2.9. Za naravno ogrevanje stavb in osvetljevanje prostorov se uporablja nizkotemperaturne sisteme. To so največkrat gradbeni elementi na ovoju stavbe, za katere se pogosto uporablja izraz »pasivna arhitektura« in od tod tudi pasivna raba sončne energije. Sisteme, ki so največkrat namenjeni segrevanju kapljevin, s katerimi se segreva sanitarno vodo, stavbe, naselja in bazensko vodo, se uvršča med srednje temperaturne sisteme ali aktivne sisteme. Redkeje se s temi sistem segreva zrak za sušenje kmetijskih pridelkov, ogrevanje stavb in prezračevanje. Med solarnimi ogrevalnimi sistemti so tovrstni sistemi najbolj razširjeni. Toplotne sončne elektrarne proizvajajo višjo temperaturo nosilca toplote, zato se jih uvršča med visokotemperaturne solarne sisteme [1, 8, 11].
Pasivna raba sončne energije pomeni uporabo primernih gradbenih elementov, kot so zidovi, okna, sončne stene, steklenjaki ipd. za ogrevanje stavb, osvetljevanje in prezračevanje prostorov, brez dodatnega nosilca toplote za prenos toplote ter brez potrebne dodatne energije. Za prenos toplote in kroženje zraka se izkorišča naravne zakonitosti (vzgonsko kroženje) in redkeje mehanske naprave. Glede na ostale sisteme so ti sistemi enostavno izvedljivi, preizkušeni v praksi, ne odstopajo od običajnega projektiranja in gradnje, ne predstavljajo bistveno povečanega stroška v primerjavi s standardno gradnjo, poleg tega jih je možno uporabiti na obstoječih stavbah kot dozidave ali adaptacije. Na osnovi pasivnega izkoriščanja sončne energije se realno lahko pričakuje prihranke v količini energije za ogrevanje stavbe od 30 do 50 %. V razvoju so tudi hiše z letnim shranjevanjem toplote, ki se bodo približale nični porabi. Na ta način bo možno graditi hišo s ničnima porabo. Katerih bo ob popolni uveljavitvi bioklimatskega pristopa k projektiranju zgradb in uporabi najnovejših materialov in naprav, kot npr. stekel s spremenljivimi optičnimi lastnostmi, hiša delovala sama zase [1, 8, 21, 32-33].

Aktivni ali srednje temperaturni solarni sistemi za rabo sončne energije so sistemi, ki pretvarjajo sončno obsevanje v toploto s pomočjo SSE, v katerih se segreva bodisi voda (za pripravo tople sanitarne vode) bodisi zrak (za ogrevanje prostorov). Oba imata vlogo nosilca toplote za prenos energije. Tovrstne solarni sisteme se lahko uporabljajo povsod, kjer je potrebna toplota. V stanovanjskih stavbah za ogrevanje sanitarne vode in podporo pri ogrevanju, za ogrevanje bazenske vode ter vode za tuširanje, z hlajenjem prostorov v trgovinah, hotelih in podjetjih ter v industriji za toplotne procese, kot je npr. sušenje. Za učinkovitost sistemov je pomembno, da je poraba toplote čim večja in čim

Slika: 2.9: Sistemi za pretvarjanje sončnega obsevanja v toploto [1, str. 69].
bolj enakomerna prek dneva in leta, zato so še posebej učinkoviti v bolnišnicah, hotelih, zdraviliščih in tudi šolah. Kljub različnim namenom imajo srednje temperaturni sistemi za pretvorbo sončnega obsevanja v toploto enake osnovne elemente, in sicer SSE, nosilec toplote, ki prenaša toploto od sprejemnika v hranilnik ali do porabnika, črpalko ali ventilator, hranilnike toplote in prenosnik toplote, ki prenaša toploto med nosilcem toplote in snovjo v hranilniku toplote (npr. sanitarno vodo) [1, 8].

Kadar so potrebne višje temperature nosilca toplote, kot se jih doseže z ravnimi SSE, se za pretvarjanje sončnega obsevanja uporablja visokotemperaturne sisteme. Višje temperature so potrebne za kuhanje v sončnih kuhalnikih, za uparjanje vode v procesni tehniki in proizvodnjo električne energije v sončnih elektrarnah. Zadostno količino visoke temperature se doseže le pri večji gostoti sončnega sevanja, kakor je v naravi. Za povečanje gostote sončnega sevanja se uporablja zrcala, ki odbijejo sončno sevanje na sprejemnik. Zgosti se lahko le direktno sončno sevanje, zato morajo zrcala slediti soncu, tako da odbiti žarki vedno dosežejo sprejemnik [1, 8].

Sončno energijo ne pretvarjamo aktivno oz. neposredno samo v toploto, temveč tudi v električno energijo s pomočjo fotonapetostnih ali fotovoltaičnih (PV) sistemov. To so sistemi, ki neposredno pretvarjajo elektromagnetno valovanje Sonca v enosmerni električni tok in napetost. Proces neposredne pretvorbe se vrši v raznovrstnih sončnih celicah [8].

Raba končne energije je definirana kot vsota rabe energije v sektorjih končne rabe, med katere spadajo predelovalne dejavnosti in gradbeništvo, promet ter široka raba, ki vključuje gospodinjstvo, storitve ter kmetijstvo. Iz analiz gibanja rabe končne energije po sektorjih v Sloveniji, slika 2.10, je razvidno, da se takoj za prometom, največ končne energije porabi v gospodinjstvih ter v predelovalnih dejavnostih in gradbeništvu. Pri tem se poraja vprašanje, kako zmanjšati rabo energije oziroma kako varovati okolje, kako zmanjšati izpuste ogljikovega dioksida ter kaj lahko posameznik, kot porabnik energije v nekem gospodinjstvu, stori? Okoli 80 % energije v gospodinjstvih se namreč potroši za ogrevanje in oskrbo s toplo vodo, slika 2.11. Varovanje okolja ni nujno pogojeno z visokimi stroški, ker se investicije v varovalne ukrepe hitro povrnejo in obrestujejo, obenem pa jih finančno spodbuja tudi država. K varovanju okolja se lahko prispeva z različnimi ukrepi, na primer izboljšava toplotne zaščite starejših stavb in
ustrezna toplotna zaščita novogрадenj, uporaba ogrevalnih naprav z visoko stopnjo letnega izkoristka, pri starejših stavbah na primer zamenjava kotla, premišljena uporaba energije za ogrevanje, ker tudi kakovostne tehnologije same po sebi še ne vodijo k optimalni rabi ipd. Poleg omenjenega ima vedno večji pomen uporaba novih ogrevalnih sistemov in OVE. Glede na to, da v Sloveniji med porabljenimi energetičnimi za ogrevanje že prevladujejo OVE, to so lesna goriva, se bomo nadaljevanju seznanili z ogrevanjem sanitarne vode ali natančneje s sprejemniki sončne energije, ki imajo na tem področju zelo velik potencial. V poglavjih, ki sledijo, bodo SSE natančneje opisani, njihova zgradba, delovanje, razvoj ipd. [36-39].

Slika 2.10: Deleži posameznih sektorjev v končni rabi energije [36].

Slika 2.11: Končna raba energije po namenih, gospodinjstvo, Slovenija, 2012 [39].
3 SPREJEMNIKI SONČNE ENERGIJE

Sprejemnik sončne energije, poznan tudi kot sončni kolektor, je osnovni element aktivnih solarnih sistemov, ki omogoča izrabo sončne energije za proizvodnjo toplete. Še pred desetletjem so bili tarča posmehovanja, danes pa si marsikdo skoraj ne predstavlja svoje strehe brez njih. Najpogosteje se jih uporablja za pripravo tople sanitarne vode, podporo ogrevanju stavbe ter ogrevanje bazenov. S pomočjo absorpcijskega sistema, s katerim toploto pretvarjamo v hlad, pa tudi za hlajenje. SSE so izpopolnjeni in visoko učinkoviti elementi. Izkoriščajo obnovljivo energijo sonca in v svoji življenjski dobi prihranijo več fosilnih goriv, kot jih je bilo porabljenih za njihovo proizvodnjo ter tako pomembno prispevajo k varovanju okolja. SSE se razlikujejo po učinkovitosti izrabe sončne energije, življenjski dobi, načinu montaže in ceni. Vsaka skupina sprejemnikov prinaša tako prednosti kakor tudi slabosti in težave. Glavne prednosti, ki jih imajo prav vse vrste SSE so prijaznost okolju, ker se z uporabo solarnih sistemov v ozračje ne spuščajo škodljive emisije, uporablja se vsem dostopen neizčrpen vir energije, nizki stroški vzdrževanja, neodvisnost od cen energentov in subvencije, ki jih podeljuje država za nakup okolju prijaznih sistemov za izkoriščanje energije [38, 40].

Solarni sistemi so v zadnjih letih v velikem porastu. Po površini SSE na prebivalca zasedamo sedmo mesto med sedemindvajsetimi državami Evropske unije in Švico. Ocenjeno je, da je v RS v uporabi 135.000 m² SSE tako v individualni kot v komercialni rabi ali okoli 0,07 m² na prebivalca. Za primerjavo ima Avstrija približno 0,38 m² SSE na prebivalca, Nemčija pa približno 0,1 m² SSE na prebivalca. Omenjeni državi pa poleg nekaterih sredozemskih držav uvrščamo med tovrstno najbolj opremljene države na svetu. Glede na povprečje v EU, kjer velja, da eno delovno mesto ustreza moči 80 kW nameščenih toplotno solarnih sistemov, je moč oceniti, da trg toplotno solarnih sistemov v Sloveniji že zdaj zagotavlja do 150 delovnih mest in ustvari več kot 8 milijonov evrov prometa letno. Pri opremljanju hiš gre trend vse bolj v smeri nizko toplotno energijskih hiš ter s tem tudi v nizko temperaturne ogrevalne sisteme, poraba toplote pa se vse bolj manjša. V enaki meri, kot upada poraba energije za ogrevanje, raste poraba energije za ogrevanje vode ter z njo uporaba SSE [10, 41].
V nadaljevanju bomo razložili, kaj je SSE. Podali bomo njegov princip delovanja in razvoj skozi zgodovino. Dotaknili se bomo solarnih sistemov za ogrevanje potrošne vode, katerih osnovni element je SSE, opisali osnovna tipa SSE ter se na koncu dotaknili še pomembnosti postavitve in naklona SSE.

3.1 DEFINICIJA SSE

Definicij o tem, kaj je to SSE, je več. Sledijo si glede na zahtevnost razlage.

Najpreprostejši SSE je dolga, z vodo napolnjena, gumijasta cev, ki jo pustimo ležati na vrtu ali na južnem delu strehe. V sončnih dneh dobimo brezplačno nekaj tople vode [24, str. 15].

SSE ali sončni kolektorji služijo za pretvarjanje sončne energije v toploto in na ta način grejejo vodo, potrebno za ogrevanje in sanitarno uporabo ter tudi zrak [12, str. 20].

SSE je sestavni element naprav za izkoriščanje sončne toplote. Le – to iz SSE prenaša voda, z dodanimi sredstvi proti zmrzovanju ali razna olja, do akumulatorjev [42, str. 213].

SSE zbirajo sončno energijo in z njo grejejo vodo v ceveh, ki ima dodano sredstvo proti zmrzovanju pri temperaturah do - 25 °C. Ogreto vodo poganja črpalka in jo vodi do prenosnikov toplote, kjer svojo toploto odda vodi v HT, ki jo nato uporabljamo za umivanje, pranje in podobno [43].

SSE je osnovni element v srednje temperaturnih solarnih ogrevalnih sistemih, ki služi za pretvorbo sončnega obsevanja v toploto, katero v čim večji meri preda kapljevini, ki se pretaka skozi SSE [8, str. 49].

Spletni viri opisujejo SSE kot napravo, ki pretvara sončno energijo v toploto in jo prenaša na solarni medij. Najpogosteje je to voda ali posebna tekočina (mešanica vode in glikola) ali zrak. Prejeto sončno energijo se lahko uporabi za pripravo tople pitne
sanitarne vode ali kot podpora ogrevalnemu sistemu ali kot ogrevanje vode za plavalne bazene [44 – 45].

Če povzamemo, je SSE najpomembnejši element toplotno solarnega sistema, katerega osnovna naloga je pretvarjanje sončne energije v toploto in prenos le-te na kapljevino, ki se pretaka skozi sistem ter tako ogreva vodo ali prostor.

3.2 PRINCIP DELOVANJA SSE

Osnovni princip delovanja SSE je enostaven. Ponazorimo ga lahko s primerom vrtne cevi za zalivanje: če gumijasto vrtno cev postavimo na sonce, se segreje, hkrati pa se v njej segreje tudi voda. Ko po določenem času zopet odpremo vrtno cev, ki je bila med tem izpostavljena sončnim žarkom, iz nje priteče topla voda. Na podoben način deluje tudi SSE.

Osnovna naloga SSE je pretvoriti sončno sevanje v toploto in jo v čim večji meri predati nosilcu toplote (voda ali voda, ki ima dodano sredstvo proti zmrzovanju ali zrak), slika 3.1, ki se pretaka skozi SSE.

![Slika 3.1: Princip delovanja SSE.](attachment:image-url)
Količina toplote Q_{SSE}, ki jo proizvede SSE, je odvisna od toplotnih izgub (sevanje, konvekcija) preko kritine $q_{izg.kritina}$ in ohišja SSE $q_{izg.zadaj}$, količine absorbiranega sončnega sevanja G_{abs} in od optičnih izgub (odboj svetlobe) pri prehodu sončnega sevanja preko prozorne kritine. Izračunamo jo:

$$q_{izg} = q_{izg.kritina} + q_{izg.zadaj}$$

kjer je A_{SSE} površina prozorne kritine SSE, q_{izg} pa je seštevek toplotnih izgub preko kritine $q_{izg.kritina}$ in ohišja SSE $q_{izg.zadaj}$.

Toplota, ki jo prejme nosilec toplote, je enaka razliki med absorbiranim sončnim sevanjem in toplotnimi izgubami. Razmerje med absorbiranim in oddanim sevanjem predstavlja emisivnost. Količino absorbiranega sončnega sevanja lahko povečamo z uporabo stekla z visoko prepustnostjo in z visoko absorbencijo sončnega sevanja na absorberju. Sodobni SSE imajo tako vgrajena posebna stekla z visoko prepustnostjo sončnega sevanja (5 do 6 % več kot pri običajnem okenskem steklu), t.i. bela stekla. Boljšo absorbencijo sončnega sevanja pa zagotavljajo sodobni selektivni nanosi. Sestavljeni so iz več plasti in omogočajo pretvorbo visokega deleža (več kot 90 %) sončnega sevanja v toploto in imajo obenem nizko emisijo toplote. Relativno novi nanosi vsebujejo plast titana-nitrida-oksida, ki ga nanesejo v vakuumu [1, 10].

Učinkovitost SSE se izračuna z:

$$\eta_{SSE} = \frac{G_{SSE} - T_{oplota}}{G_{SSE}}$$

Gde je G_{SSE} sončno sevanje na pokrov SSE. Višja kot je temperatura absorberja, večje so toplotne izgube in zato učinkovitost SSE manjša. Ker običajno ne poznamo vseh konstrukcijskih parametrov SSE niti točnih optičnih lastnosti, njihovo učinkovitost določamo s preskusi [10].

Dejstvo je, da je izkoristek ploščatih sprejemnikov tudi 80- ali več odstoten pri neposrednem sončnem sevanju in nizki temperaturi nosilca toplote (ko je ta skoraj izenačena s temperaturo okolice). Ko se pa temperatura nosilca toplote povečuje, se povečujejo tudi izgube v okolico, izkoristek pa se s tem zmanjšuje. Pri vakuumskih sprejemnikih je drugače. Višje izkoristke imajo v difuzni svetlobi, ko je sonca malo. Zato je lahko njihova površina za ogrevanje enakega volumna tudi do 40 odstotkov manjša kot pri ploščatih. Vakuum v cevnih sprejemnikih omogoča glede na dane možnosti najboljše izkoriščanje sončne energije tudi jeseni, spomladi in tudi pozimi, zato imajo vakuumski sprejemniki boljše izkoristke od ploščatih skozi vse leto [44, 46].
3.3 ZGODOVINSKI PREGLED SSE

Slika 3.2: (a) Lavoisierova leča za zgoščevanje sončnega sevanja, (b) oglas za solarni ogrevalni sistem [10].

Slika 3.3: (a) Eden prvih solarnih sistemov, zgrajenih v Sloveniji leta 1984, (b) hotelski kompleks Slovenska plaža v Budvi [8, str. 16].

3.4 SOLARNI SISTEM

Kot smo omenili, ločimo tri vrste solarnih ogrevalnih sistemov. Med njimi so najbolj razširjeni sistemi za pridobivanje toplote na srednjem temperaturnem nivoujo za ogrevanje bazenov, stavb in tople potrošne vode. V nadaljevanju bomo na kratko opisali sisteme za ogrevanje potrošne vode.

Glede na to, kako potuje nosilec toplote od SSE do HT, ločimo dve osnovni izvedbi solarnih sistemov za ogrevanje vode: sistem z naravnim obtokom in sistem s priljubljenim obtokom. Oba sistema pa delimo še na enokrožne in dvokrožne sisteme.
Pri sistemih z naravnim obtokom kroži nosilec toplote zaradi vzguna, kar pomeni, da se v SSE segreje, postane lažji ter se dviga v HT, kjer toploto preda, se ohladi in se zaradi večje gostote vrne nazaj v SSE. Tovrstni sistemi so nekoliko manj v uporabi, so pa cenejši, delovanje je zanesljivejše, ker je malo mehanskih delov, so neodvisni od elektronike in električne energije, ker za svoje delovanje ne potrebujejo črpalke. SSE je priključen na hišno napeljavo sanitarne vode. Slabost takega sistema je, da HT leži višje od SSE.

Sistemi, pri katerih nosilec toplote kroži s pomočjo črpalke, so sistemi s prisilnim obtokom. Takšni sistemi morajo imeti dodan regulator, ki vklaplja in izklaplja črpalko v odvisnosti od temperature tekočine na izstopu iz SSE ter v odvisnosti od temperature vode v HT. Regulator vklopi črpalko, ko je temperatura na izstopu iz SSE za 1 – 3°C višja od temperature v HT in jo izklopi, ko sta temperaturi enaki. Pri teh sistemih se HT največkrat nahaja v pritličju ali kleti.

Pri enokrožnem (direktnem) sistemu je nosilec toplote obenem tudi potrošna voda in ta kroži skozi SSE in hranilnik toplote. Toplo vodo odvzamemo na najvišjem mestu, zato mora biti HT nameščen vsaj 0,5 m nad SSE, da se prepreči nočno protikroženje in ohlajanje HT. Ti sistemi so enostavni, vendar morajo biti grajeni za tlake, ki so v vodovodnem omrežju. Ker niso zaščiteni proti zmrzovanju, jih moramo pozimi izprazniti. Pri tem lahko pride v sistem zrak, kar lahko ob vgradnji neprimernih materialov povzroči močno korozijo.

Pri dvokrožnem (indirektnem) sistemu potuje segret nosilec toplote po ceveh sekundarnega kroga do hranilnika toplote, kjer preko prenosnika toplote odda toploto sanitarni vodi. V tem primeru je nosilec toplote mešanica vode in protizmrzovalnega sredstva (glikola). Ti sistemi delujejo celo leto, morajo pa imeti dodan varnostni ventil in raztezno posodo.10 Sistemi z naravnim obtokom so običajno enokrožni, slika 3.4 (a), sisteme s prisilnim obtokom pa navadno sestavljata ločena tokokroga, slika 3.4 (b) [1].

10 Raztezna ali ekspanzijska posoda v sistemih za ogrevanje in oskrbo z vodo prevzema spremembe prostorne toplote zaradi sprememb teplotnih temperatur [21].
3.4 VRSTE SSE

Slika 3.4: Shema delovanja SSE pri (a) enokrožnem sistemu z naravnim obtokom in (b) dvokrožnem sistemu s prisilnim obtokom [47].

Klub različnim nalogam imajo enake osnovne elemente, tj. SSE in HT.

3.5 VRSTE SSE

Danes je na trgu moč dobiti več različnih tipov SSE, ki jih v osnovi delimo na ploščate ali panelne in vakuumске ali cevne SSE. Vsem je skupno, da pretvarjajo sončno energijo v toploto, ki se izkorišča predvsem za pripravo tople vode ali kot podpora ogrevalnemu sistemu. Razlikujejo se glede na način izdelave, učinkovitost izrabe sončne energije, življenjsko dobo in način montaže.

3.5.1 Ploščati SSE

Ploščati ali panelni sprejemniki sončne energije, slika 3.5, so najbolj razširjeni sprejemniki, ker so ena prvih tehnologij za izkoriščanje sončne energije. Nekateri proizvajalci zmanjšajo odbojnost sončnih žarkov tako, da zgornjo površino steklene kritine dodatno obdelajo z jedkanjem, s čimer naj bi povečali prepustnost za 5%.
Ploščati sprejemniki so glede na površino cenovno dostopnejši od vakuumskih SSE. Velja tudi, da so pri neposrednem osončenju in nizki temperaturi solarnega medija izkoristki delovanja ploščatih sprejemnikov večji v primerjavi z vakuumskimi, ki so bolj učinkoviti v difuzni svetlobi (ob oblačnem vremenu), ko je sonca manj. Ploščati sprejemniki so manj občutljivi na udarce in imajo večjo površino absorberja ob enaki bruto površini. Ker imajo inštalaterji s tovrstnimi sprejemniki dolgoletne izkušnje, sta montaža in instalacija kvalitetno opravljeni. Značilno za ploščate sprejemnike je, da imajo večje toplotne izgube skozi stekleno kritino in toplotno izolacijo, kar posledično vpliva na slabše delovanje v hladnejših mesecih in vetrovnem vremenu. Poleg tega imajo počasen toplotni odziv zaradi velike toplotne mase, kar pomeni, da pri hitrem spreminjanju osončenja razpoložljive sončne energije niso sposobni dovolj hitro izkoristiti in segreti solarni medij do želene temperature. Za razliko od vakuumskih sprejemnikov ne delujejo oziroma ne koristijo difuzne svetlobe. Zaradi precejšnje mase ploščatih sprejemnikov je njihovo prenašanje in nameščanje naporno opravilo, zlasti v primeru z dodanim vodnim rezervoarjem, ko je potrebno dodatna strešna konstrukcija za namestitev [43, 50 – 52].

V osnovi so SSE zgrajeni iz 4 komponent, slika 3.6, in sicer:

- absorberja kot jedro sprejemnika sončne energije,
- toplotne izolacije,
- prozorne kritine ter
- ohišja oz. okvirja.
Absorber je bistveni element SSE, ki sprejema sončno sevanje, ga pretvori v toploto in preda tekočini (nosilcu toplote), ki teče skozi sprejemnik. Pri ploščatih SSE je absorber običajno sestavljen iz bakrenih ali aluminijastih cevi, prekritih z absorbersko ploščo. Cevi so zaradi boljše toplotne prevodnosti privarjene na ploščo. Da je stična površina med njima čim večja, nekateri proizvajalci uporabljajo ploščate cevi. Glede na to, ali so cevi privarjene po višini ali po dolžini, ločimo kolektorje za vertikalno ali horizontalno montažo. Da je sposobnost vsrkavanja sončne energije čim večja, so površine absorberjev prevlečene s premazi oz. nanosi, ki so praviloma črne barve. Z njimi se zmanjša toplotne izgube SSE zaradi sevanja, zato mora biti njihova termična emisivnost čim nižja. Le-ta mora oz. naj bi zagotavljala dolgotrajno obstojnost in odpornost na visoke temperature. Zato se uporablja ali visoko selektivna barva, odporna do 250°, največkrat pa visoko selektivni nanos (naparjen titanov oksid), ki je mehansko in kemično odporen, kar naj bi zagotavljalo življenjsko dobo tudi do 20 let.

Pod absorberjem se nahaja toplotna izolacija, ki preprečuje izgubo toplote v okolico. Pri ravnih SSE se za toplotno izolacijo uporablja steklena ali kamena volna ali poliuretanska pena, debeline 40 - 60 mm (nosični okvir se zalije s poliuretano) in mineralno volno. Nekateri proizvajalci za toplotno izolacijo uporabijo okoli 2 cm steklene volne in dodajo le še približno 3 cm trde izolacijske mase. Vzrokov za to je več, eden izmed njih je tudi ta, da je poliuretan zanesljiv le do temperature 100°C, drug pomemben vzrok pa je ta, da je kompenzacija pritiska, ki nastane, ko se zrak v
zatesnjem SSE segreje in razširi. Kamena vlakna niso priporočljiva kot toplotna izolacija, ker rada vpije vodo in tvori agresivne spojine, ki razžirajo kovinske dele. Tem težavam se ognemo s stekleno volno.

Prozorna kritina ima funkcijo zmanjševanja toplotnih izgub SSE v okolico ter zaščite absorberja pred zunanjimi vplivi. Največkrat se uporablja eno- včasih tudi dvoslojno visoko prepustno steklo debeline 4 mm ali prizmično kaljeno steklo z majhno vsebnostjo železa, odporno na udarcje oz. ne preveč občutljivo zanje. Poleg tega mora prepuščati le majhen del toplotnega sevanja absorberja skozi steklo navzven. Običajno steklo ima visoko vsebnost železovega oksida, ki absorbira sončno sevanje in je na robu zeleno. Steklo z nizko vsebovanostjo železa pa je brezbarvno, zaradi česar ga imenujemo »bela steklo« in ohrani učinek tople grede. Pri izbiri prozorne kritine se upošteva, da je obstojna pri ekstremnih meteoroloških in temperaturnih pogojih (dež, veter, toča, sneg, ekstremno nizke in visoke temperature okolice) ter ima lastnost, da prepušča sevanje v spektru sončne svetlobe, hkrati pa toplotno sevanje absorberja odbija (reflektira) nazaj nanj.

Ohišje je neprosojni del, ki ščiti in nosi elemente SSE. Sprejemniku nudi zadostno trdnost in zaščito pred atmosferskimi vplivi, omogoča namestitev vseh sestavnih delov ter z dodatnimi elementi omogoča montažo SSE. Za kovinsko ohišje se uporablja aluminij, pocinkana pločevina, včasih tudi s steklenimi vlakni utrjena umetna snov. V vsakem primeru mora omogočati večletno zanesljivo obratovanje SSE pri vseh ekstremnih meteoroloških pogojih [4, 20, 43 – 44].

3.5.2 Vakuumski cevni SSE

V osnovi so vakuumski SSE zgrajeni iz enojne ali dvojne steklene cevi, znova katere je vakuum, ki zagotavlja zelo dobro toplotno izolacijo in hkrati ščiti SSE pred zunanjimi vplivi. Funkcijo absorberja opravlja ali zunanjja stena notranje steklene cevi, ki je prevlečena z visoko selektivnim nanosom, ali bakrena plošča z visoko selektivnim nanosom, ki je nameščena v notranjosti cevi.

Vakuumski cevni SSE so sistem, ki najboljšim izkoristom v vseh letnih časih in v različnih vremenskih pogojih. Boljši izkoristek imajo predvsem v prehodnem obdobju
Energijo lahko črpajo tudi iz difuzne svetlobe, zato zagotavljajo dovolj tople vode tudi v oblačnem vremenu. V oblačnem vremenu naj bi se enako dobro obnesli tudi ploščati sprejemniki z visoko selektivnim nanosom, vendar je prednost vakuumskih boljša toplotna izolacija, kar hkrati pomeni večjo učinkovitost od ploščatih SSE ne glede na letni čas in klimatske razmere. Poleg tega so pod vakumske cevi običajno nameščeni parabolični reflektorji iz visoko odbojnega aluminija, ki zagotavljajo akumulacijo sončnih žarkov od jutra do večera. Čeprav so se na trgu pojavili že pred 20 leti, so danes veliko bolj tehnološko dovršeni in učinkoviti, obenem je tudi njihova cena dostopnejša širši populaciji. Ponašajo se z boljšim izkoristkom, tudi do 90 %, obenem pa ob manjši potrebi površini dosegajo enake učinke kot klasični ploščati sprejemniki. Glede na sestavne dele, delovanje in tehnologijo ločimo več vrst vakuumskih SSE. Na trgu so kot rečeno na voljo vakuumski cevni SSE z dvojno plastjo stekla ter pravi vakuumski SSE z enojno plastjo stekla. Slednji so učinkovitejši in imajo nizko toplotno vztrajnost, zato hitro reagirajo tudi zgodaj ob nekajminutnem izboljšanju sončnega obsevanja. Njihovo razvrstitev najdemo v preglednici 3.1 [43, 50 – 51].

Preglednica 3.1: Vrste vakuumskih SSE

<table>
<thead>
<tr>
<th>Vakuumski cevni SSE z dvojno stekleno cevjo</th>
<th>Pravi vakuumski SSE z enojno stekleno cevjo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuumski SSE sistem »cev v cevi«</td>
<td>Vakuumski SSE s toplotno cevjo (»heat pipe«)</td>
</tr>
<tr>
<td>Vakuumski U-cevni SSE</td>
<td>Vakuumski SSE s toplotno cevjo (»heat pipe«)</td>
</tr>
<tr>
<td>Vakuumski SSE s toplotno cevjo (»heat pipe«)</td>
<td>Vakuumski SSE s toplotno cevjo (»heat pipe«)</td>
</tr>
</tbody>
</table>

Omenjene vakumske SSE bomo v nadaljevanju na kratko predstavili, glavne karakteristike pa na koncu podali v preglednici 3.2.

Značilnost vakuumskega cevnega SSE sistem »cev v cevi«, slika 3.6, je koaksialna (toplotno-izmenjevalna) cev prenosnika toplote, ki se nahaja v vakuumski cevi in je privarjena na bakren absorber. Skozi cev se direktno pretaka nosilec toplote. Ta preko toplotno-izmenjevalne cevi sprejema toploto z absorberja in jo po razdelilnem cevnem sistemu prenaša v hranilnik toplote. S tem sistemom se nosilec toplote segreva dokaj hitro. Njegova glavna slabost je, da ne zdrži bistvenega nadtlaka, zato običajno ne
Sistem z zapro zanko pomeni, da prenosna tekočina, ki se segreva v SSE, ni obenem tudi sanitarna voda. Prenosna tekočina je v zaprtem sistemu in segreva sanitarno vodo preko prenosnika toplote v hranilniku toplote [21].
Vakuumska steklena cev z visoko selektivnim nanosom absorbira sončno svetlobo, slika 3.8, in jo pretvori v toploto. Ta se preko aluminijastega prenosnika znotraj steklene cevi prenese na prenosno tekočino (voda ali najpogosteje mešanica vode in glikola), ki kroži v U-cevi. Od tu potuje segreta prenosna tekočina skozi zbirno cev do hranilnika toplote, kjer neposredno ali preko toplotnega prenosnika segreva sanitarno vodo [51, 55].

Glavni element vakuumskih sprejemnikov s toplotno cevjo, slika 3.9, je toplotna cev ali s tujo heat pipe. To je zaprta izparilno kondenzacijska običajno bakrena cev za hitri prenos toplote. Toplotna cev je na enem koncu zaključena s kondenzatorjem, znotraj katerega je nameščen termodinamični ventil (kovina s spominom), ki preprečuje pregrevanje vakuumskih sprejemnikov. Napolnjena je z nosilcem toplote (največkrat je to voda, včasih tudi alkohol ali mešanica obojega ipd.) pri zelo nizkem tlaku, s pomočjo katerega doseženo zelo nizko vrelišče (npr. že pri sobni temperaturi cca. 25°C). To se odraža pri minimalnih toplotnih izgubah ter zagotavljanju visoke vzdržljivosti sprejemnika in njegovega stabilnega delovanja. Toplotna cev je po celotni dolžini

Slika 3.7: Zgradba vakuumskega U-cevnega SSE [56].

Slika 3.8: Shema delovanja U-cevnega SSE [57].

Slika 3.9: Shema vakuumskega SSE s toplotno cevjo [49].
Kljub prednostim vakuumskih SSE so najbolj razširjeni ploščati SSE. Le-ti imajo trenutno tudi najugodnejše razmerje med ceno in učinkovitostjo, čeprav naj bi bili heat pipe SSE za do 50 % bolj učinkoviti [50].

Preglednica 3.2: Karakteristike SSE [8, 58-59].

<table>
<thead>
<tr>
<th>Ploščati SSE</th>
<th>Vakuumski SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namen uporabe</td>
<td>Namen uporabe</td>
</tr>
<tr>
<td>• Za pripravo tople sanitarno vode, za podporo ogrevanju (redkeje)</td>
<td>• Za pripravo tople sanitarno vode, za dogrevanje</td>
</tr>
<tr>
<td>Izkoristek</td>
<td>45–85 % do 90 %</td>
</tr>
<tr>
<td>Največja učinkovitost</td>
<td>Poleti, pri neposrednem osončenju in nizki temperaturi nosilca toplote</td>
</tr>
<tr>
<td>Skozi vse leto, predvsem v prehodnih obdobjih in v oblačnem vremenu</td>
<td></td>
</tr>
<tr>
<td>Absorber</td>
<td>Bakrena ali aluminijasta plošča z visoko selektivnim nanosom</td>
</tr>
<tr>
<td>Visoko selektivni nanos ali visoko selektivna plošča oz. rebro</td>
<td></td>
</tr>
<tr>
<td>Prozorna kritina</td>
<td>Eno- ali dvoslojno kaljeno steklo</td>
</tr>
<tr>
<td>Enojna ali dvojna boro-silikovna steklena cev</td>
<td></td>
</tr>
<tr>
<td>Toplotna izolacija</td>
<td>Steklena ali kamena volna ali poliuretanska pena</td>
</tr>
<tr>
<td>Vakuum</td>
<td></td>
</tr>
<tr>
<td>Letno proizvedena toplota</td>
<td>Od 450 do 500 kWh/m²</td>
</tr>
<tr>
<td>Do 600 kWh/m²</td>
<td></td>
</tr>
<tr>
<td>Naklon</td>
<td>Med 25 in 45°</td>
</tr>
<tr>
<td>Med 40 in 60°</td>
<td></td>
</tr>
<tr>
<td>Cena (za absorbersko površino 2 m² brez DDV)</td>
<td>Zmerna (od 500 do 1.200 €)</td>
</tr>
<tr>
<td>Visoka (od 1.100 do 1.500 €)</td>
<td></td>
</tr>
</tbody>
</table>

3.6 POSTAVITEV IN NAKLON SSE

Sprejemniki sončne energije dosegajo najboljši izkoristek, če nanje padajo sončni žarki čim bolj pravokotno, a to ni nujno, če z njimi ogrevamo le sanitarno vodo. Ker SSE običajno namestimo na streho z naklonom, je prvi pogoj za izkoriščanje sončne energije z aktivnimi sistemi primerna lega stavbe. Najbolje je, da je streha obrnjena proti jugu, sprejemljive so tudi smeri od JV do JZ. Če streha ni postavljena v najbolj ugodni smeri, lahko SSE namestimo tudi na druga mesta, ki niso preveč oddaljena od hranilnika toplote, le-ta pa ne sme biti preveč oddaljen od porabnikov. Poleg tega stavba ne sme
biti v senci drugih stavb, gozda, hribov ali podobno, ker le-ti zmanjšujejo izkoristek sprejemnikov. Če se zgodí, da je del površine sprejemnika čez dan delno zasenčena, jo moramo ustrezno povečati. Na kot postavitve vpliva tudi skupna površina SSE. V poletnem času je namreč pri veliki površini skupna moč ogrevanja dovolj visoka tudi pri neugodnem kotu. Medtem ko je v jesenskih in spomladanskih mesecih, ko je sončno sevanje manj intenzivno, pomembno, da izberemo najugodnejši kot tako, da vpadajo sončni žarki na sprejemnik čim bolj pravokotno. Glede na velikost vgrajenih površin sprejemnika s predpostavkami določimo ali izračunamo, za kateri mesec naj bi bil kot postavitve sprejemnika najugodnejši glede na lego sonca. Optimalni nagib sprejemnika je torej odvisen od časa, ki se preko celega leta spreminja v odvisnosti od višine Sonca kakor tudi od zemljepisnega položaja kraja ter znaša od 20° do 70° od horizontale. Velikokrat pa je nagib SSE pogojen že s samim naklonom strehe, na kateri so nameščeni sprejemniki. Najbolje naredimo, če sprejemnik nagnemo pod najbolj ugodnim kotom v smeri jugovzhod do jugozahod. Če solarni sistem deluje samo poleti, naj bo sprejemnik nagnjen za 35° - 45°. Če pa obratuje skozi celo leto, pa naj bo sprejemnik nagnjen za približno 35° - 50°. Odklon ± 15° od omenjene smeri še ne zmanjšuje učinkovitosti samega sprejemnika [20, 24, 29, 45, 60].
4 MODEL SSE

»Vsak dan poslušamo, da planet, ki smo ga dobili od naših prednikov v skrb, ječi pod bremeni okoljske brezbržnosti. Pomembno je, da se ob tem zavemo, da bomo pozitivne premike dosegli le, če bo vsak od nas po svojih najboljših močeh spremenil način razmišljanja ter sprejel naravi prijaznejši življenjski slog« [61]. Prihodnost družbe temelji na visokem deležu OVE pri oskrbi z energijo. Skoraj ves potencial OVE vidimo v energiji Sonca. V okviru tehniškega izobraževanja na osnovnošolski ravni pa se v glavnem podajajo samo teoretične osnove o OVE, sončni energiji in njenem vplivu na okolje. To pomeni, da so tako OVE kot tudi sončna energija nezadostno vključeni v UN, kar se posledično kaže tudi v nepoznavanju tehnologij za izkoriščanje sončne energije med učenci, predvsem za pretvarjanje sončne energije v toploto.

V šoli je praktičnega prikaza o delovanju sončne energije malo. Učitelj jo velikokrat predstavi na podlagi razlage, manjkra pa s pomočjo demonstracije, saj so za to potrebni učni pripomočki. Tu pogosto pride do težave, ker je za njihov nakup potreben dodaten denar. Včasih sta potrebna samo kanček domišljije in iznajdljivosti, da naredimo ustrezne pripomočke kar sami ali še bolje, skupaj z učenci. V nadaljevanju želimo načrtovati, da bi se podaljšali modeli ploščatega in vakuumskega SSE, ki bi bil primeren za izdelavo za učence devetega razreda osnovne šole v okviru tehniškega izobraževanja. Predno začnemo načrtovanje, podajamo pregled obstoječih modelov, primerno ciljanih za šolske namene.

4.1 PREGLED OBSTOJEČIH MODELOV SSE

V tem poglavju smo predstavili pregled obstoječih modelov SSE, kar nam bo kasneje pomagalo pri določitvi dimenzij ploščatega modela SSE.

4.1.1 Slovenski viri

4.1.1.1 Model sončnega kolektorja

Model sončnega kolektorja, slika 4.1, je izdelalo podjetje Virles iz Domžal za Pedagoško fakulteto v Ljubljani. Tovrstni učni pripomoček je zelo dobrodošel pri obravnavi alternativnih virov energije. Primeren je prav tako za uporabo na razrednem pouku, saj bi učenci lahko razumeli samo uporabo in delovanje SSE kot tudi na predmetnem pouku, ko bi z njim že lahko samostojno raziskovali [62].

Slika 4.1: Model sončnega kolektorja [62].

Model sončnega kolektorja sestavlja absorber, na katerega so pritrjene bakrene cevke. Tako absorber kot cevke so prevlečene s črno barvo, da absorbirajo večji del sončne svetlobe. Površina absorberja meri 0,144 m². Za toplotno izolacijo je uporabljen ekspanderan polistiren. Vse to je vstavljeno v ohišje, ki je z zgornje strani zastekljeno. Model sončnega kolektorja je preko silikonskih cev v povezan s HT, v katerem je prenosnik toplote v obliki cevne spirale izdelan iz bakrenih cev. Prostornina HT je 1
liter. Modelu je priložena tudi črpalka, s pomočjo katere kroži voda skozi sistem. Z modelom, ki je pomanjšana verzija realnega sončnega kolektorja, lahko primerno ponazorimo delovanje SSE. Poleg tega ima možnost merjenja temperature v več točkah. Meri se lahko temperaturo vode, ko le-ta vstopa in izstopa iz modela sončnega kolektorja. Meri se lahko tudi, koliko se voda segreje na približno eni četrini poti skozi model sončnega kolektorja ter temperaturo vode v HT [62].

4.1.1.2 Zeleno ogrevanje

Raziskovalno temo Zeleno ogrevanje so pripravili slovenški raziskovalci, ki sodelujejo pri projektu Chain Reaction in so člani Oddelka za fiziko in tehniko na Pedagoški fakulteti v Ljubljani. Namenjena je bila osnovnim šolam za izvedbo v okviru tehniškega dne. Pri TD so učenci izkoriščali sončno svetlobo za gretje vode s posebnimi z vodo napолнjenimi grelniki, ki na površini absorbirajo svetlobo, zaradi česar je voda v notranjosti segrela. Pri vaji so učenci ugotavljali, kakšen mora biti grelnik, da bo karseda dobro segreval vodo. Pri tem so v skupinah raziskovali vpliv različnih parametrov, ki vplivajo na grelno moč sončnega kolektorja [63].

V okviru vaje je bilo pripravljenih več aktivnosti, ki so bile razdeljene na tri dneve. Prvi dan so učenci spoznavali osnovne sestavine sončnega kolektorja in fizikalne osnove njegovega delovanja, nato pa po skupinah sestavljali preprost model sončnega kolektorja. Za tem so se učenci postavili v vlogo raziskovalca, ki je prebral sestavek o Zelenem ogrevanju 2, ki je javni razpis v reviji. In proti koncu prvega dne so učenci na podlagi izkušenj iz življenja postavili hipoteze o možnih izboljšavah modela in načrtovali testne poskuse. Drugi dan so učenci testirali svoje hipoteze z obširnim raziskovanjem vpliva izbranih parametrov na učinkovitost kolektorja. Tretji dan pa so učenci v obliki razredne konference poročali o njihovih izsledkih in oblikovali skupne zaključke.

Aktivnost je bila razdeljena na 3 šolske dni. Prvi in drugi dan so aktivnosti trajale 5 – 6 šolskih ur, tretji dan pa se je aktivnost lahko izvedla v krajišem času, npr. v eni šolski uri ali kot razredna konferenca, ki je trajala dalj časa. Za izvedbo vaje naj bi učenci poznali pojem energije ter Celzijevo in Kelvinovo temperaturno lestvico. Pri izvedbi te vaje so učenci na zelo aktiven način raziskovali, kako izdelati preprost model sončnega...
kolektorja, da bo karseda učinkovit, pri tem pa pridobili veliko znanj, razumevanja, spremnosti in veščin. Za izdelavo modela so imeli na voljo sledeče pripomočke [63]:

- kartonasta, lesena ali plastična nizka škatla (zaboj) s tankimi stenami,
- 3 m plastične prozorne cevke, notranjega premera 5 mm, pripomočki za pritrjevanje cevke k škatli, npr. tanke žičke, lepilo ali silikon,
- 2 termometra, ki kažeta na 0,1 stopinje natančno v območju od 10 do 100 stopinj Celzija,
- 1 T člen z nastavljivim ventilom,
- kovinski disk za obtežitev cevke,
- napajalnik za piščance z 1,5-litrsko plastenko (za vzdrževanje konstantne višine vodne gladine v napajalniku, tudi ko voda odteka),
- izolirni trak in trajno elastični kit,
- aluminijasta folija (za zaščito termometrov pred sevanjem reflektorja),
- plodina ekspandiranega polistirena,
- velika zbiralna posoda,
- 400W bel reflektor s stojalom,
- štoparica,
- merilnik moči svetlobnega sevanja,
- listi z navodili, milimetrski papir, pisala in kalkulator,
- brisačke, potrebne v primeru razlitja vode.

4.1.2 Tuji viri

Pri pregledu tujih virov smo našli veliko modelov SSE [67-73]. In še bi lahko naštevali. V večini primerov gre za zelo poenostavljene modele SSE, primerne za raziskovanje sončne energije na razrednem pouku [68-69, 71]. Med naštetimi sta tudi dva modela SSE, primerna za samostojno izdelavo, npr. v osmem ali devetem razredu OŠ [67, 70]. Izdela se ju lahko ali po strategiji delovne naloge ali na aktiven način, kjer je problem,
kako narediti SSE s pomočjo predloženega materiala. Omenjena modela bomo v nadaljevanju opisali. Predstavili bomo tudi izdelavo vakuumskega modela SSE, ki je namenjen t.i. tehniškim entuziastom, ki doma raziskujejo načine izkoriščanja sončne energije, vendar je primeren tudi za izdelavo v devetem razredu OŠ [72]. Med obstoječimi modeli pa najdemo tudi primere, ki so namenjeni promociji uporabe tehnologije SSE v okviru samogradnje [73].

4.1.2.1 Projekt o sončni energiji

Projekti o sončni energiji so izdelani za srednje in višje šole (v ZDA) oz. učencem, starim od 14 do 15 let, da spoznajo različne načine izkoriščanja sončne energije. V okviru teh projektov učenci izdelajo solarni ogrevalni sistem, slika 4.1, ki je sestavljen iz SSE in HT. Model lahko izdeluje cel razred ali manjše skupine po 3 do 4 učenci. Predvideni čas izdelave je od 2 do 5 šolskih ur, odvisno od sposobnosti učencev [67].

![Slika 4.1: Solarni ogrevalni sistem [67].](image)

Sprejemnik sestavljajo osnovni elementi SSE, in sicer absorber, toplotna izolacija, ohišje in prozorna kritina. Absorber je izdelan iz pocinkane pločevine, dimenzije 250 x 250 mm, in mehke bakrene cevi, premera 10 - 12 mm in dolžine 1 m. Kot material za toplotno izolacijo je uporabljen ekspandiran polistiren ali valovita lepenka ali časopis. Ohišje je narejeno iz lepenke, dimenzije 510 x 510 mm, slika 4.2. Za prozorno kritino je uporabljena prozorna PVC folija, dimenzije 400 x 400 mm.

Kot material za HT je uporabljena pločevinka za kavo s pokrovom, prostornine 0,5 L ali 1 L. Ohišje je narejeno iz škatle, ki je nekoliko širša od pločevinke. Za toplotno izolacijo je uporabljen ekspandiran polistiren ali valovita lepenka ali časopis.
Postopek izdelave je sledeč. Na nasprotnih straneh ploče sta izrezani luknji. Ena luknja je 2,5 cm pod zgornjim robom, druga pa 2,5 cm nad spodnjim robom. V luknji je vstavljena in prispajkana 5 cm dolga mehka bakrena cev. Tako izdelan HT je vstavljen v ohišje, na katerem sta predhodno izrezani luknji za dovodno in odvodno cev, slika 4.5. Vmesni prostor je napolnjen s toplotno izolacijo [67].

Slika 4.5: HT [67].

4.1.2.2 Solarni ogrevalni sistem

Izdelava solarnega ogrevalnega sistema, slika 4.6, je namenjena učencem, starim od 14 do 15 let. Proces izdelave sistema traja 180 minut in je razdeljen na tri dni po 60 minut. Delo poteka v skupinah po 3 učenci. Učenci po skupinah načrtujejo in izdelajo model sončnega grelnika vode, ki je pomanjšana različica dejanskih solarnih sistemov, ki se uporabljajo v gospodinjstvih za pretvarjanje sončnega sevanja v toplotno energijo [70].

Slika 4.6: Solarni ogrevalni sistem [70].
Kot prikazuje slika 4.6, učenci izdelajo dve izvedbi SSE. Leva izvedba SSE je sestavljena iz osnovnih elementov, tj. absorber, toplotna izolacija, ohišje in prozorna kritina. Absorber je izdelan iz aluminijaste folije in 91 cm dolge mehke bakrene cevi (notranji premer 10 mm, zunanji 12 mm). Kot material za toplotno izolacijo je uporabljen zmečkan papir. Za ohišje je uporabljena kartonska škatla dimenzije 300 x 300 x 100 mm s pripadajočim prozornim pokrovom kot prozorno kritino. Pri desni izvedbi SSE pa ni uporabljen toplotni izolacij. Aluminijast pekač za enkratno uporabo, dimenzije 230 x 330 x 50 mm, pa je hkrati ohišje in absorber. Za prozorno kritino je uporabljen prozorni plastični pokrov aluminijastega pekača.

Slika 4.7: Ohišje SSE [70].
Kot material za HT je uporabljena pločevinka za kavo (V ≥ 1 L). V pločevinko je malo nad dnom izvrtana luknja, premera 12 mm. Za ohišje je uporabljena kartonska škatla, ki je z vsake strani 2,5 cm širša od HT. Na ohišju je izrezana luknja, ki sovpada z luknjo na HT. Skozi obe luknji je vstavljena 61 cm dolga PVC cev (notranji premer 10 mm, zunanj 12 mm). Spoj med PVC cevjo in HT je zatesnjen z vodoodpornim lepilom. Vmesni prostor je toplotno izoliran z zmečkanim papirjem, slika 4.10.
Dovodna cev SSE je povezana s HT, odvodna cev SSE pa je splošna v merilno skodelico [70].

4.1.2.3 Vakuumsko izpaznjena sončna cev

Izdelava vakuumsko izpaznjene sončne cevi, slika 4.11, je enostaven postopek. Izdelamo jo lahko doma, ker je material za izdelavo lahko dostopen. Sončna cev ima večino elementov vakuumskih SSE, tj. dvojno stekleno cev, vakuum kot toplotni izolator in napršena črna barva na zunanj strani notranje steklene cevi, ki služi kot absorber. Kot material za izdelavo notranje steklene cevi je uporabljena steklenica za vino (V ≥ 0,75 L) oz. steklenica za pivo (V = 0,5 L), narejeni iz barvanega stekla (npr. rjavo oz. zeleno). Za zunanjo stekleno cev je uporabljena vaza iz prozornega stekla, ki je nekoliko večja od steklenice. Dvojna steklena cev je zatesnjena s poliestersko smolo. V tesnilo je izvrtana luknja in v njo vstavljena PVC cev. Na PVC cev je nameščen ventil, s katerim preprečimo, da bi vakuum med dvojno stekleno cevjo popuščal. Vakuum je ustvarjen s pomočjo vakuumskih črpalk. Pričetno 1 minuto traja, da se ustvari primeren podtlak [72].

Slika 4.11: Vakuumsko izpraznjena sončna cev [72].

Na spletnem trgovini lahko najdemo veliko modelov SSE. Njihov namen uporabe je zelo različen. Narejeni so ali za uporabo v OŠ kot maketa ali kot modeli za proučevanje delovanja. Nekateri so izdelani kot didaktično učilo, drugi za samostojno izdelavo. Eni so
namenjeni razrednemu pouku, drugi predmetnemu, tretji za srednješolski sistem itn. Imamo tudi modele, izdelane za promocijske marketinške namene. Večina teh modelov je narejenih za naravoslovne namene, torej eksperimentalnemu načinu ugotavljanja relevantnih pojavov in zakonitosti. Bistveno manj jih je izdelanih za namen izdelave in izredno malo za kakšen aktiven način, kjer bi bil problem, kako narediti SSE in ne izdelava SSE “po receptu”.

4.2 IZDELAVA MODELA

V predhodnem poglavju smo predstavili nekaj modelov, narejenih za šolske in domače namene. Predstavljeni modeli so primerni za izdelavo in prikaz delovanja SSE. Vendar identičnih modelov nismo izdelali, ker je za nekatere potrebno več časa za izdelavo, drugi ne vsebujejo vseh osnovnih elementov realnih SSE, pri tretjih so uporabljeni zahtevnejši obdelovalni postopki. Ker želimo prikazati primerjavo učinkovitosti delovanja ploščatega in vakuumskega SSE, smo izdelavo modelov prilagodili temu (čas, obdelovalne postopke, material), pri tem pa izhajali iz obstoječih modelov. V nadaljevanju bomo najprej predstavili zahteve, ki smo jih upoštevali pri zasnovi modela SSE in shemo le tega, sledi potek izdelave modela SSE ter preizkus in primerjava delovanja ploščatega in vakuumskega SSE. Na koncu bomo podali ugotovitve, ali modela ustrezata izhodiščnim zahtevam.

4.2.1 Koncept modela SSE

Pri zasnovi ploščatega in vakuumskega modela SSE smo upoštevali 6 zahtev, ki so nam pomagale dobiti smiselne rezultate pri preizkušanju in funkcionalnosti modela SSE. Zahteve so sledče:

1. osnovni elementi SSE,
2. izbira materiala,
3. dimenzijske zahteve,
4. zahtevnost izdelave,
5. časovna omejitev in
6. cenovna ugodnost.
4.2.1.1 Zasnova ploščatega modela SSE

Izdelati želimo poenostavljen model ploščatega SSE, ki bo hkrati vseboval osnovne elemente realnega SSE, ki so absorber, toplotna izolacija, prozorna kritina in ohišje.

Pri izbiri materiala smo izhajali iz obstoječih modelov (podpoglavlja 4.1.2.1 – 4.1.2.2), hkrati pa smo upoštevali, da je cenovno ugoden, splošno dostopen (ali kot odpadni material ali v supermarketih ali tehničnih trgovinah) in enostaven za obdelavo. Zahteve glede materiala smo predstavili v preglednici 4.1.

Preglednica 4.1: Zahteve glede materiala za ploščati model SSE.

<table>
<thead>
<tr>
<th>Elementi SSE</th>
<th>Predvideni material</th>
<th>Dostopnost</th>
<th>Okvirna cena [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorber</td>
<td>aluminijast pekač</td>
<td>supermarket</td>
<td>0,79 (dim. 290x370x45 mm)</td>
</tr>
<tr>
<td>absorberska cev</td>
<td>mehka bakrena cev</td>
<td>tehnična trgovina</td>
<td>1,5/ m²</td>
</tr>
<tr>
<td>prozorna kritina</td>
<td>prozorna PVC folija</td>
<td>supermarket</td>
<td>2,20 (60 m)</td>
</tr>
<tr>
<td>toplotna izolacija</td>
<td>ekspandiran polistiren</td>
<td>tehnična trgovina</td>
<td>4/ m²</td>
</tr>
<tr>
<td>ohišje</td>
<td>lepenka oz.</td>
<td>odpadni material</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>kartonska škatla</td>
<td>odpadni material</td>
<td>/</td>
</tr>
</tbody>
</table>

Pri dimenzijskih določitvah modela SSE smo izhajali iz obstoječih modelov (podpoglavlja 4.1.2.1 – 4.1.2.2) ter jih prilagodili dostopnemu materialu. Upoštevali smo tudi, da velikost absorberja ni pod minimalno tlorisno površino obstoječih modelov. Primerjavo dimenzij obstoječih modelov in zasnovanega modela ploščatega SSE smo predstavili v preglednici 4.2.

Preglednica 4.2: Primerjava dimenzij obstoječih modelov in zasnovanega ploščatega modela SSE.

<table>
<thead>
<tr>
<th>Elementi SSE</th>
<th>Mere obstoječih materialov</th>
<th>Predvidene mere modela SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorber</td>
<td>230 x 330 mm</td>
<td>290 x 370 mm</td>
</tr>
<tr>
<td>absorberska cev</td>
<td>10 x 2 mm (1 m)</td>
<td>8 x 2 mm (1 m)</td>
</tr>
<tr>
<td>prozorna kritina</td>
<td>400 x 400 mm</td>
<td>320 x 400 mm</td>
</tr>
<tr>
<td>toplotna izolacija</td>
<td>0 – 25 mm (tj. debelina,</td>
<td>380 x 300 x 4 mm, 300 x 42 x 4 mm (2 kom.), 370 x 42 x 4 mm (2 kom.)</td>
</tr>
<tr>
<td></td>
<td>ostale dimenzije niso podane)</td>
<td></td>
</tr>
<tr>
<td>ohišje</td>
<td>250 x 300 mm</td>
<td>485 x 405 x 4 mm</td>
</tr>
</tbody>
</table>

Preden učitelj zasnuje model SSE za določeno starostno skupino učencev, mora upoštevati tudi zahtevnost izdelave modela. Učenci morajo znati brati tehniško in
tehniloško dokumentacijo ter varno in pravilno uporabljati pripomočke, orodja in stroje za obdelavo papirnih gradiv, umetnih mas in kovin. Vse to usvojijo pri pouku TIT od 6. do 8. razreda dveletne OŠ.

Pri zasnovi modela smo določili časovno omejitev, tj. da za izdelavo ploščatega modela SSE ne presežemo 1 šolske ure z odstopanjem 20 minut navzgor.

Kot že omenjeno, smo pri izbiri materiala upoštevali, da je cenovno ugoden, da posamezen material ni dražji od 5 €.

4.2.1.2 Zasnova vakuumskega modela SSE

Pri zasnovi vakuumskega modela SSE smo določili, da vsebuje osnovne elemente realnega vakuumskega U-cevnega SSE, tj. dvojna steklena cev, pri čemer je zunanj stran notranje steklence cevi počrnjena, vakuum kot toplotna izolacija ter bakrena U-cev.

Glede izbire materiala za izdelavo smo izhajali iz obstoječega modela (podpoglavlje 4.1.2.3) ter upoštevali, da je splošno dostopen in cenovno ugoden, preglednica 4.3.

Preglednica 4.3: Zahteve glede materiala za vakuumski U-cevni model SSE.

<table>
<thead>
<tr>
<th>Elementi vakuumskega SSE</th>
<th>Predvideni material</th>
<th>Dostopnost</th>
<th>Okvirna cena [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>notranja steklena cev</td>
<td>steklenica za sok (s širokim grlom)</td>
<td>odpadni material</td>
<td>/</td>
</tr>
<tr>
<td>zunanja steklena cev</td>
<td>kozarec</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>U-cev</td>
<td>mehka bakrena cev</td>
<td>tehnična trgovina</td>
<td>1,5 / m²</td>
</tr>
</tbody>
</table>

Pri določitvi dimenzij vakuumskega modela SSE smo upoštevali predvideni material in glede na to določili smiselno dimenzijsko razmerje absorberske cevi ploščatega in vakuumskega SSE, ki je 2:1.

Zahtevnost izdelave modela mora biti prilagojena starostni skupini učencev, ki bo model izdelovala. Učenci morajo znati brati tehniško in tehnološko dokumentacijo ter varno in pravilno uporabljati pripomočke, orodja in stroje za obdelavo umetnih mas in kovin.
Časovna omejitev za izdelavo vakuumskega modela dopušča čas izdelave 1 šolsko uro.

Za zasnovo modela smo določili zahtevo po cenovni ugodnosti, da posamezni material ne presega vrednosti 5 €.

4.2.1.3 Zasnova modela HT

Zaradi lažjega preizkušanja delovanja smo zasnovali tudi HT. Pri zasnovi smo upoštevali enake zahteve kot pri zasnovi ploščatega modela SSE. Cilj je izdelati poenostavljen HT, ki bo vseboval osnovne elemente realnega HT, tj. hranilnik vode, toplotna izolacija in ohišje. Tudi pri izbiri materiala smo izhajali iz obstoječih modelov (podpoglavja 4.1.2.1 – 4.1.2.3) ter upoštevali, da je cenovno ugojen, splošno dostopen in enostaven za obdelavo, preglednica 4.4.

Preglednica 4.4: Zahteve pri izbiri materiala.

<table>
<thead>
<tr>
<th>Elementi HT</th>
<th>Predvideni material</th>
<th>Dostopnost</th>
<th>Okvirna cena [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hranilnik vode</td>
<td>pločevinasta posoda</td>
<td>odpadna embalaža</td>
<td>/</td>
</tr>
<tr>
<td>toplotna izolacija</td>
<td>polietilenska pena</td>
<td>supermarket/ odpadni material</td>
<td>3/ m²</td>
</tr>
<tr>
<td>ohišje</td>
<td>lepenka</td>
<td>odpadni material</td>
<td>/</td>
</tr>
<tr>
<td>dovodna in odvodna cev</td>
<td>PVC cev</td>
<td>tehnična trgovina</td>
<td>0,33 / m</td>
</tr>
</tbody>
</table>

Pri dimenzijskih določitvah smo prav tako izhajali iz obstoječih modelov (podpoglavja 4.1.2.1 – 4.1.2.3), zato je predvidena prostornina HT 1 L. Upoštevali smo tudi, da zahtevnost izdelave modela HT ne presega znanja učencev, ki so ga usvojili pri pouku TIT od 6. do 8. razreda devetletne OŠ. Učenci morajo znati brati tehniško in tehnoško dokumentacijo ter, kot lahko razberemo iz preglednice 4.3, varno in pravilno uporabljati pripomočke, orodja in stroje za obdelavo papirnih gradiv, umetnih mas in kovin. Vse to usvojijo pri pouku TIT od 6. do 8. razreda devetletne OŠ. Peta zahteva je časovna omejitev za izdelavo modela HT, ki določa, da ne presežemo 1 šolske ure. Zadnja zahteva, cenovna ugodnost, določa, da ne presežemo cene 5 € za posamezni material.
4.2.2 Shema modela SSE

Ko smo določili zahteve, smo narisali shemo, slika 4.12, kako približno naj bi izgledala modela ploščatega, slika 4.12, in vakuumskega SSE, slika 4.13.

Slika 4.12: Shema solarnega sistema s ploščatim SSE.

Slika 4.13: Shema solarnega sistema z vakuumskim SSE.
Glede na predvidene mere modela in material smo za ploščati model SSE izdelali tehniško (delavniške risbe, sestavno risbo in montažno risbo) in tehnološko dokumentacijo (tehnološki in operacijski list), priloga V. 8 – V. 9, V. 13 – V. 14. Ves material, orodja, stroji in pripomočki, ki so potrebni za izdelavo modela so napisani v Delovni nałogi, priloga V. 6 – V. 7.

4.2.3 Izdelava ploščatega modela SSE

Po tehniški in tehnološki dokumentaciji (priloga V. 8, V. 13) smo izdelali model ploščatega SSE, slika 4.14, ki je pomanjšana in poenostavljena različica realnega SSE.

Slika 4.14: Model ploščatega SSE.

Model ploščatega SSE, kot kaže slika 4.14, sestavljajo osnovni elementi ploščatega SSE, zato ustreza prvi zahtevi, ki smo jo določili v poglavju 4.2.1. Za izdelavo modela smo uporabili material, ki je splošno dosegljiv ali v supermarketih ali v tehničnih trgovinah ali kot odpadni material, in ki ne presegna vrednosti 5 € za posamezni element. Pri tem nismo uporabili enakih materialov kot so potrebni za izdelavo realnih SSE, npr. bakrene pločevine za absorber, kaljenega stekla za prozorno kritino, steklene volne za toplotno izolacijo in aluminijastih profilov za ohišje, ker gre za poenostavljen model in pri tem ne bo ogrožena funkcionalnost ploščatega modela SSE. Prav tako model SSE ne bomo nikoli izpostavljali slabim vremenskim pogojem, zato ni potrebe pred zaščito pred snegom, točno ipd. Vsak sestavni element pa kljub temu opravlja svojo funkcijo. Druga
in šesta zahteva glede izbire materiala in cenovne ugodnosti sta izpolnjeni. Pri določitvi dimenzij smo upoštevali mere, ki smo jih opisali v preglednici 4.2 in tako izpolnili dimenzioni zahteve. Zahtevnost izdelave ne presega znanja učencev, ki ga pridobijo pri pouku TIT. S tem je izpolnjena zahteva glede zahtevnosti izdelave.

4.2.4 Izdelava vakuumskega modela SSE

Pri izdelavi vakuumskega U-cevnega modela SSE, slika 4.15, smo upoštevali tehniško in tehnološko dokumentacijo, priloga V. 9, V. 14. Model vsebuje vse elemente realnega vakuumskega U-cevnega SSE, tj. dvojno stekleno cev (ki služi kot prozorna kritina), pri kateri je zunanj stran notranje steklene cevi napršena s črno barvo (ta opravlja nalogo absorberja), bakreno U-cev (skozi katero se pretaka nosilec toplote) in vakuum kot toplotno izolacijo. S tem smo izpolnili prvo zahtevo (podpoglavje 4.2.1). Prav tako so izpolnjene vse ostale zahteve, saj smo pri izdelavi modela uporabili material, ki je splošno dosegljiv in cenovno ugoden. Zahtevnost izdelave ne presega znanja učencev, ki ga usvojijo pri pouku TIT skozi vsa tri leta. Model je izdelan znotraj obsega 1 ure in v predvidenem razmerju 2:1.

4.2.5 Model solarnega sistema

Model ploščatega SSE kot vakuumskega SSE smo zaradi lažjega preizkušanja delovanja povezali v solarni sistem, slika 4.14. Za to smo izdelali model HT po tehniški in tehnološki dokumentaciji (priloga V. 10-V. 12, V. 15) v obsegu 1 ure. Kot material
za izdelavo HT smo uporabili jekleno pločevinasto posodo (V = 1L) s kositrovim slojem za zaščito pred rjavenjem. Ohišje smo izdelali iz lepenke, debeline 4 mm. Za toplotno izolacijo pa smo uporabili polietilensko peno, prav tako debeline 4 mm. Za posamezni material nismo potrošili več kot 5 €. S tem ustreza izhodiščnim zahtevam, ki so opisane v poglavju 4.2.1, tudi glede zahtevnosti izdelave, saj ne presega osnovnošolskega znanja, pridobljenega pri pouku TIT.

Slika 4.16: (a) Model solarnega sistema s ploščatim SSE, (b) model solarnega sistema z vakuumskim SSE.

4.2.6 Preizkus delovanja modela solarnega sistema

Za preizkus delovanja modela solarnega sistema s ploščatim in vakuumskim SSE smo uporabili 500 W reflektor, analogni merilnik temperature in štoparico ter za vakuumski model SSE smo izdelali še parabolični reflektor iz aluminijaste folije. Oba modela, slika 4.17, smo obsevali z reflektorjem 60 minut.

Slika 4.17: Model solarnega sistema s ploščatim in vakuumskim SSE.
Po pretečeni 1 uri smo dobili rezultate, ki smo jih podali v preglednici 4.5 in primerjali na sliki 4.18. Razberemo lahko, da je razlika v naraščanju temperature vode majhna in se pokaže šele proti koncu, tj. po 40 minutah. Vzrokov za to je lahko več. Ker, kot smo omenili v poglavju 3.2, ne poznamo vseh konstrukcijskih parametrov niti točnih optičnih lastnosti, njihovo učinkovitost določamo s preizkusi.

Preglednica 4.5: Meritve preizkusa delovanja modelov solarnega sistema s ploščatim in vakuumskim SSE.

<table>
<thead>
<tr>
<th>Čas</th>
<th>Temperatura vode v HT solarnega sistema s ploščatim SSE °C</th>
<th>Temperatura vode v HT solarnega sistema z vakuumskim SSE °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred testiranjem</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>po 10 min</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>po 20 min</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>po 30 min</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>po 40 min</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>po 50 min</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>po 60 min</td>
<td>32</td>
<td>38</td>
</tr>
</tbody>
</table>

Slika 4.18: Naraščanje temperature vode v HT solarnega sistema s ploščatim, modra krivulja, in vakuumskim SSE, rdeča krivulja, v odvisnosti od časa.

Ker smo želeli izboljšati učinkovitost oz. razliko v naraščanju temperature povečati, smo se odločili modela SSE dodelati tako, da bosta bolj primerljiva (glede dimenzij in materialov). Ploščatemu modelu SSE smo zamenjali prozorno kritino. Namesto PVC
folije smo uporabili akrilno steklo. Pri vakuumskem modelu SSE pa smo povečali vakuum ter namesto dvojne steklene cevi uporabili eno stekleno cev (zunanjo). S tem smo izboljšali toplotno izolacijo ter povečali absorbcijsko površino (ki je sedaj v razmerju s ploščatim SSE 1:1).

Dodelana modela, slika 4.19, smo ponovno testirali ter po 1 uri obsevanja dobili rezultate, ki so podani v preglednici 4.6. Primerjava v naraščanju temperature pa je prikazana na sliki 4.20.

![Dodelana modela solarnega sistema s ploščatim in vakuumskim SSE.](image)

Slika 4.19: Dodelana modela solarnega sistema s ploščatim in vakuumskim SSE.

Preglednica 4.6: Meritve ponovnega preizkusa delovanja modelov solarnega sistema s ploščatim in vakuumskim SSE.

<table>
<thead>
<tr>
<th>Čas</th>
<th>Temperatura vode v HT solarnega sistema s ploščatim SSE [°C]</th>
<th>Temperatura vode v HT solarnega sistema z vakuumskim SSE [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred testiranjem</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>po 10 min</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>po 20 min</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>po 30 min</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>po 40 min</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>po 50 min</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>po 60 min</td>
<td>41</td>
<td>47</td>
</tr>
</tbody>
</table>
Slika 4.20: Naraščanje temperature vode v HT dodelanega solarnega sistema s ploščatim, modra krivulja, in vakuumskim SSE, rdeča krivulja, v odvisnosti od časa.

Iz podanega grafa lahko razberemo, da se majhna razlika v naraščanju temperature v HT pokaže že na začetku, potem pa se samo stopnjuje. S tem smo dokazali, da je model solarnega sistema z vakuumskim SSE učinkovitejši od modela solarnega sistema s ploščatim SSE.
5 TEHNIŠKI DAN SSE

V okviru tehniškega izobraževanja v OŠ se v glavnem podajajo teoretične osnove o sončni energiji in njenem vplivu na okolje. Načini izkoriščanja so zelo skopo obravnavani in poleg tega samo pretvarjanje sončne energije v električno energijo. SSE niso niti omenjeni navkljub njihovi razširjenosti, uporabnosti in okolju prijazni tehnologiji. Učenci bi se morali bolje seznaniti s sončno energijo in njenimi načini izkoriščanja, saj je energija prihodnosti.

5.1 NAVEZAVA NA UČNI NAČRT

Preden začnemo načrtovati TD na tematiko SSE, se je potrebno seznaniti z vsebinami, s katerimi so se učenci pri naravoslovno tehničnih predmetih v času svojega izobraževanja že srečali, kakor tudi z vsebinami, ki jih učenci še ne poznajo. Zanimalo nas je, kdaj in v kolikšni meri se učenci srečajo s pojmi kot so OVE, sončna energija, načini izkoriščanja sončne energije in SSE. Pregledali smo UN obveznih naravoslovno-tehničnih predmetov ter v preglednicah št. 10.1 - 10.4 (priloga 10.1) podali cilje, ki so povezani z omenjenimi pojmi.

V prvi triadi se učenci pri predmetu Spoznavanje okolja seznanijo z lastnostmi svetlobe, izvorom svetlobe, Soncem in potovanjem svetlobe. Nato v četrtem in petem razredu pri predmetu Naravoslovje in tehnika nadgradijo svoje znanje. Spoznavajo procese in pojave, si ob tem postavljajo vprašanja in z eksperimentiranjem odgovarjajo nanje. Učijo se okolje preudarno spreminjati in spoznavajo potrebo po varčevanju z naravnimi viri. Pri pouku TIT se učenci v sedmem razredu seznanijo z alternativnimi viri ter načini pridobivanja električne energije. V osmem razredu se osredotočijo na fosilne gorive, ki jih uvrstijo med neobnovljive vire energije, proučijo vplive motorizacije na okolje in utemeljijo ukrepe za zmanjšanje negativnih vplivov [74-76].

Povzamemo lahko, da sta tako OVE kot sončna energija zelo skopo obravnavana v okviru rednega pouka. Slovenija ima razmeroma dolgo tradicijo gradnje SSE, zato ni presenetljiv podatek, da so zelo razširjeni in uporabni, obenem pa nimajo škodljivih
vplivov na okolje. Kljub temu tehnologija ni vključena v UN, zato je posledično učenci tudi ne poznajo.

5.2 UMESTITEV SSE V TEHNIŠKO IZOBRAŽEVANJE

Za izdelovanje, preizkušanje delovanja modelov SSE in razumevanje delovanja je potrebno določeno znanje tehnike in fizike. Izdelava modelov vključuje delo s papirnimi gradivi, umetnimi snovmi in kovinami, ki ga učenci usvojijo pri pouku TIT od 6. do 8. razreda. Tematika SSE zahteva poznavanje energijskih virov, zakonitosti prehajanja toplote in toplotnih tokov. To znanje učenci pridobijo pri pouku fizike v 9. razredu OŠ. Omenjena dejstva upravičujejo izvedbo tehniškega dne v devetem razredu OŠ [76-77].

5.3 IZBIRA STRATEGIJE/METODE DELA

V nadaljevanju bomo zato omenili poglavite značilnosti omenjenih metod dela.

5.4 DELOVNA NALOGA

Delovna naloga je ena izmed enostavnejših strategij za izdelovanje izdelkov. Pouk poteka po posredovanih ali priloženih navodilih. Učitelj učencem pripravi operacijski list, na katerem imajo natančno zapisane in prikazane postopke izdelave izdelka. Učenci uporabljajo tudi ustrezo tehniško in tehnološko dokumentacijo, kot so skice, risbe, delavniške, sestavne in montažne risbe, ki jih preučijo in se lotijo izdelave modela.
Vloga učitelja pri delovni nalogi je, da učence usmerja in pripelje do realizacije zastavljenih ciljev, metod in postopkov [80-81].

5.5 INDUKTIVNE METODE POUČEVANJA

V vzgojno-izobraževalnem procesu se učitelji velikokrat poslužujejo tradicionalnega načina poučevanja, pri čemer uporabljajo deduktivne metode, kot so razlaga, demonstracija, razgovor, delo s tekstop ipd. Deduktivni pristop k poučevanju je osredotočen na učitelja, ki v aktivni vlogi posreduje znanje, učenci pa ga absorbirajo in v enaki obliki podajo nazaj. Boljši način za aktivno vključenost učencev v pouk je uporaba alternativnih metod poučevanja, ki jih imenujemo induktivno poučevanje in učenje.

Pri tem pristopu se pouk začne s problemom ali izzivom, ki ga učenci v nadaljevanju učnega procesa interpretirajo, analizirajo oz. rešujejo problem. Na ta način spoznavajo potrebo po znanju, sposobnostih in razumevanju. Pri tem ima učitelj še vedno pomembno vlogo, ker učencem zagotavlja podporo, pomoč pri učenju ter jih usmerja skozi učni proces. Poudarek pa je na učencih, ki z lastno aktivnostjo raziskujejo in odkrivajo svoje znanje. Pri tovrstnem načinu dela so učenci bolj motivirani in imajo večjo odgovornost za svoje učenje. Induktivne metode zahtevajo aktivnost učencev pri pouku, vključujejo ga v diskusije in reševanje problemov, pri tem pa učenci delajo večinoma v skupinah.

K induktivnim metodam poučevanja uvrščamo več različnih metod [82]:

- poizvedovalno učenje,
- problemsko učenje,
- projetno učenje,
- učenje na primerih,
- učenje ravno ob pravem času ter
- učenje z odkrivanjem.

5.5.1 Učenje z vodenim odkrivanjem

1. Učitelj poda problem oziroma vprašanje.
2. Učitelj in učenci skupaj podajo ideje za raziskovanje teme.
3. Učenci individualno ali v skupinah pridobijo in interpretirajo podatke.
4. Skupine naredijo sklep in zaključek ter izmenjajo informacije z ostalimi skupinami. Po potrebi jih tudi popravijo.
5. Učitelj na koncu pomaga razčistiti nesporazume in zapisati pravilne zaključke.
5.6 PREDLOG IZVEDBE TEHNIŠKEGA DNE

Faza 1: Postavitev problema ali vpričanj.

Faza 2: Ideje za raziskovanje teme

Učenci so razdeljeni v skupine po 4, tako kot so bili pri izdelavi modela. V tej fazi iščejo ideje za rešitev problemov, ki si jih zapisujejo na list papirja. Na koncu jih

Faza 3: Pridobivanje in interpretacija podatkov.

Faza 4: Sklep in izmenjava informacij med skupinami.
V fazi sklepanja morajo učenci znotraj skupine oblikovati zaključke, kar pomeni, da morajo glede podatke, ki so jih pridobili tekom eksperimenta, zapisati ugotovitve in rešitve k vprašanjem. Pričakuje se, da bodo učenci samostojno prišli do rešitev, ki jih predvideva UP. Torej, da bodo pri četrti nalogi narisali graf naraščanja temperature v odvisnosti od časa za oba SSE (ploščatega in vakuumskega) ter ugotovili, da je prišlo do razlike v naraščanju temperature zaradi boljše toplotne izolacije vakuumskega SSE, tj. vakuum znotraj dvojne steklene cevi. Pri zadnji nalogi pa morajo podati nekaj
predlogov, s katerimi bi izboljšali delovanje SSE, npr. boljšo toplotno izolacijo, prozorno kritino, večji absorber, ohišje, ki ima manjše toplotne izgube ali cevno napeljavo, ki povezuje SSE s HT zamenjali z bakreno, ki ima boljšo toplotno prevodnost. Pri tej nalogi je pomembna ugotovitev, da učinkovitost SSE izboljšamo z zmanjšanjem toplotnih in optičnih izgub, kar pomeni z izbiro kvalitetnejše toplotne zaščite, konstrukcije ohišja, absorberske plošče ipd. Učencem je v tej fazi v pomoč tudi metoda razgovora, da pridejo do ustreznih sklepov.

Faza 5: Razrešitev nesporazumov in zapis zaključkov.

6 DISKUSIJA

V nadaljevanju bomo predstavili, v kolikšni meri smo dosegli zastavljene cilje C1 – C5, iz prvega poglavja.

C1: Podati pregled obnovljivih virov energije in določiti smiselnost uporabe sončne energije.

V drugem poglavju, v podpoglavlju 2.1, smo predstavili OVE ter poudarili njihov pomen za prihodnost, ki se kaže v zmanjševanju uvozne odvisnosti, počasnejši rabi fosilnih goriv, večji zaposlenosti in večjem deležu BDP (oprema, storitve). V podpoglavlju 2.2 smo določili smiselnost uporabe sončne energije. Sončna energija je obnovljiva, okolju prijazna energija, ki ne obremenjuje okolja s stranskimi produkti, ki nastanejo pri procesu pretvarjanja energije, je povsod dostopna in brezplačna. Uporaba sončne energije lahko zagotovi pomemben del energije za naše potrebe. V Sloveniji celotni potencial sončnega sevanja zadošča za več kot 300 kratno pokritje lastnih potreb, izkoriščamo pa manj kot 3 % ocenjenega razpoložljivega potenciala. Zaradi vsega omenjenega je tako OVE nasploh kot tudi izkoriščanje sončne energije zelo smiselno vključiti v tehniško izobraževanje na osnovnošolski stopnji.

C2: Podati razvoj in pregled obstoječih tehnologij za izkoriščanje sončne energije.

Pregled obstoječih tehnologij za izkoriščanje sončne energije smo na splošno podali v podpoglavlju 2.2.2. V tretjem poglavju smo se osredotočili na tehnologije za pretvarjanje sončnega obsevanja v toploto oz. natančneje na SSE, za katere smo podali razvoj skozi zgodovino. Prvi, ki je zgradil in patentiral SSE, je bil Francoz Augustin Mouchet, a so do obdobja med letoma 1880 in 1900, ko so bili razviti SSE, kot jih poznamo danes, doživeli kar nekaj sprememb. Od teh sta bistveni spremembi oblike in velikosti. Ena od prvih tehnologij za izkoriščanje sončne energije so ploščati SSE, ki so zaradi tega in cenovne dostopnosti glede na površino najbolj razširjeni. Kljub temu da so vakuumski SSE učinkovitejši, še posebej v difuzni svetlobi, ko je sončne svetlobe manj, zaradi visokih cen glede na površino še niso nasledili ploščatih SSE.
C3: Določiti smiselni model sprejemnika sončne energije za uporabo v okviru tehniškega izobraževanja v osnovni šoli.

V četrtem poglavju smo predstavili model ploščatega in vakuumskega U-cevnega SSE, povezanega v solarni sistem, ki ju lahko izdela učitelj za demonstracijske namene ali učenci za spoznavanje tehnologije SSE. Pred izdelavo modelov smo najprej poizvedovali o obstoječih modelih in na podlagi njihove analize in vrednotenja izdelali model, ki smo ga podali v podpoglavju 4.2. Za izdelavo vakuumskega U-cevnega SSE smo se odločili, ker je material za izdelavo, tj. bakrena cev, lažje dostopen in cenejši kot npr. koaksialna ali toplotna cev. Izdelava ploščatega modela SSE pa služi za primerjavo delovanja različnih tipov SSE.

C4: Podati predlog izvedbe tehniškega dne na tematiko sprejemniki sončne energije z uporabo učenja z odkrivanjem.

V petem poglavju je podana UP za TD (priloga 10. 2). UP zajema izdelavo ploščatega in vakuumskega modela SSE, preizkušanje in analiziranje delovanja ter vrednotenje funkcionalnosti naprave. UP predstavljaa primer uporabe dveh metod dela in sicer delovno nalogo in učenja z vodenim odkrivanjem. Tako je tehniški del TD izveden vodeno, fizikalni del pa je poudarjen z namenom, da učenci pridejo do teh znanj sami.

Cilj TD je, da učenci spoznajo tehnologijo SSE in da bodo s poznavanjem principov, pojavov ter zakonov lahko le te izkoristili sebi v prid in izdelali nekaj, kar bo reševalo nek problem, npr. doseči toplo vodo na čim cenejši način.

C5: Izdelati tehniško in tehnološko dokumentacijo za izdelavo uporabljenih modelov sprejemnikov sončne energije v okviru tehniškega dneva.

V prilogi V. 8 – V. 15 smo podali tehniško in tehnološko dokumentacijo za izdelavo modela ploščatega in vakuumskega U-cevnega SSE v okviru tehniškega dneva. Tehniška dokumentacija obsega delavniške risbe, sestavne risbe in montažne risbe, tehnološka dokumentacija pa tehnološke liste in operacijske liste. Cilj dokumentacije je, da lahko na podlagi nje katerikoli učenec po končanem osmem razrede devetletke (zaradi poznavanja obdelovalnih postopkov) ali učitelj tehnike in tehnologije izdela model ploščatega ali vakuumskega SSE.
7 ZAKLJUČEK

V diplomskem delu smo na splošno predstavili OVE in poudarili izkoriščanje sončne energije, ker je neizčrpan in čist energijski vir. Osredotočili smo se na tehnologije za pretvarjanje sončne energije v toploto, natančneje na tehnologijo SSE, ker omenjeni tehnologiji v pretoklosti ni bil posvečen tako veliko poudarek kot na primer tehnologijam za proizvodnjo električne energije. Tudi v okviru tehniškega izobraževanja v osnovni šoli ne. Posledično smo se odločili izkoriščanje sončne energije približati učencem. Naš namen je bil prikazati učencem, kako učinkovita in preprosta je uporaba sončne energije. Nismo odkrivali nekaj novega, kajti vse je že zelo izpopolnjeno v vsakdanji rabi in se še izpopolnjuje in nadgrajuje. Lahko bi postavili dva lončka vode, enega prebarvali s črno barvo in postavili na sonce. Dokazali bi, da se v črnem lončku voda hitreje segreva. To je najenostavnejši način prikaza izkoriščanja sončne energije. Če pa uporabimo druge materiale in postopke, pa izvedemo še učinkovitejšo rabo energije. Učenci naj bi to spoznali z izdelavo različnih modelov SSE, ju preizkusili in analizirali razlike v delovanju. Tudi model vakuumskega SSE je moč poenostaviti, in sicer tako, da ne bi uporabili HT in U-cevi, ampak bi izdelali samo dvojno vakuumsko stekleno cev, zunanj raztraj notranj stekleno cev prebarvali na črno ter vodo natočili v notranj stekleno cev. Za primerjavo bi uporabili enako veliko steklenico, kot bi jo uporabili za notranj stekleno cev in jo prebarvali na črno. Tako bi model poenostavili, pocenili in skrajišali čas izdelave. Vendar s tem primerjalni SSE ni več ploščati SSE in ne vsebuje osnovne elemente realnega SSE. Izbira izdelave izbranih modelov SSE temelji na nazornejši primerjavi ploščatega in vakuumskega SSE.

TD bi lahko razširili na temo energija ter se osredotočili še na teme, kot so energija skozi čas, učinkovita raba energije, varčne hiše, OVE, kako izboljšati varčnost šole ipd. s ciljem povečati znanje in izkušnje o pridobivanju, koriščenju, varčevanju in iskanju novih alternativnih virov ter spoznavanje posledic rabe različnih oblik energije. Vključili bi učence od 6. do 9. razreda.
8 LITERATURA IN VIRI

[22] Obnovljivi viri energije [lab.fs.uni-lj.si/kes/energije_in_okolje/eo-predavanje-09.pdf].

[27] Slovar najpogostejših pojmov v fotovoltaiki [http://ss1.spletnik.si/000/000/12b/331/Slovar_20najpogostejx9aih_20pojmov_20v _20fotovoltaiki.pdf].

Raba končne energije po sektorjih [http://kazalci.arso.gov.si/?data=indicator&ind_id=455].

Novi ogrevalni sistemi (Ljubljana, TZS, 2008).

Spodbujanje rabe sončne energije [http://www.energetika.net/novice/clanki/spodbujanje-rabe-soncne-energije].

I. Klevže, Ogrevanje, knjiga za ogrevalno tehniko (Maribor, Društvo instalaterjev energetikov, 2013).

T. Japelj, Ogrevanje, hlajenje in prezračevanje (Ljubljana, TZS, 1985).

Solarni sistemi za pripravo tople vode [http://gcs.gizrmk.si/Svetovanje/Clanki/Grobovsek/PT28.htm].

Solar hot water collectors [http://www.greenspec.co.uk/building-design/solar-collectors/].

Sprejemniki sončne energije [http://www.solare.org/fileadmin/media/docs/slovenian/dogodki/sprejemniki_soncne_energije_02.pdf].
[53] Viessmannovi solarni sistemi [www.viessmann.si/etc/...si/.../PL_Vitosol200-T_5839453.pdf].
[54] Kollektoren – Typen
 [http://www.greenpeace.org/switzerland/de/Kampagnen/Jugendsolar/Wissen/Warm-e-mit-Sonne/Kollektoren-Typen/].
[55] Vakuumski cevni kolektor s paraboličnim kolektorjem
 [http://www.solvere.si/Media/Gradiva/CALKOL1VTN12_Tehnicni_list.pdf].
[56] Solar water heating [http://www.barclayerskine.co.uk/solarwaterheating.html].
[57] LinkedSun U Pipe Solar Collector
[58] Sončna energija – za pripravo sanitarne vode in podpora ogrevanju
[59] Sončni kolektorji za ogrevanje sanitarne vode in objekta
[64] Sledilnik sončnih žarkov in primerjalna analiza sončnih kolektorjev
[65] Ploščati sončni kolektor in zalogovnik tople vode
[66] Samogradnja sprejemnikov sončne energije
 [gcs.gizrmk.si/svetovanje/clanki/2malovrh/BOGFEsamogradnjaSSE.pdf].
[79] Inductive teaching and learning methods: Definitiosns, comparisons and research bases.

9 STVARNO KAZALO

A
absorber, 26, 39, 42, 46
aktivni solarni sistemi, 12, 14, 15, 18, 33
alternativni viri energije, 7

B
biomasa, 7, 9

delovna naloga, 58
dvokrožni sistem, 23, 24

E
električna energija, 6, 16
energija, 5
energija vetra, 7, 9
energija vode, 7, 9
enokrožni sistem, 23, 24

F
fosilna goriva, 5, 6, 56
fotonapetostni sistemi, 16

G
geotermalna energija, 7
globalne klimatske spremembe, 5

H
heat pipe, 31
hidroenergija, 8
hranilnik toplote, 19, 23, 40, 43, 48

I
induktivne metode poučevanja, 59
izkoriščanje sončne energije, 13, 56

L
lega stavbe, 33

M
model ploščatega SSE, 35, 61
model vakuumskega SSE, 61

N
nagib sprejemnika, 34
nizkotemperaturni solarni sistemi, 14
nosilec toplote, 15

O
obnovljivi viri energije, 7, 8, 17, 35, 56
ohišje, 26, 28, 39, 42, 46
operacijski list, 58

P
pasivna raba energije, 14, 15
planetarna energija, 7
ploščati sprejemniki sončne energije, 25, 33, 46, 49,
prozorna kritina, 26, 28, 39, 42, 46

R
raba končne energije, 16

S
sistem s prisilnim obtokom, 23, 24
sistem z naravnim obtokom, 23, 24
solarni sistemi, 22, 41, 51
sončna energija, 9, 19, 35, 56
sončne celice, 16
sončni kolektorji, 18, 19
sončno obsevanje, 11, 13, 19
sončno sevanje, 7, 10
sprejemniki sončne energije, 14, 15, 18, 19, 20, 22,
42, 56, 61
srednje temperaturni solarni sistemi, 14, 19

T
technika in tehnologija, 56
težnšča in tehnološka dokumentacija, 50, 51, 58
težniški dan, 61
toplotna izolacija, 26, 27, 39, 42, 46
trajanje sončnega obsevanja, 12

U
učenje z odkrivanjem, 60, 61
učna priprava, 61
učni načrt, 35, 56

V
vakuumski cevni SSE sistem »cev v cevi«, 29
vakuumski sprejemniki sončne energije, 25, 28, 44
vakuumski U-cevni SSE, 30, 47, 49, 51
vakuumskih SSE s toplotno cevjo, 31
visokotemperaturni solarni sistemi, 14, 16

73
10 PRILOGE

10.1 PREGLED UN

Preglednica 10.1: Operativni cilji pri predmetu Naravoslovje in tehnika, ki so povezani s SSE ali sončno energijo [75].

<table>
<thead>
<tr>
<th>Naravoslovje in tehnika</th>
<th>4. razred</th>
<th>5. razred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vsebina: Pretakanje snovi</td>
<td></td>
<td>Vsebina: Vpliv Sonca na vreme in Sonce ogreva zrak in vodo</td>
</tr>
<tr>
<td>Operativni cilj</td>
<td>Učenci znajo:</td>
<td>Operativni cilj</td>
</tr>
<tr>
<td>- opisati rezervoar (zbiralnik, hram), razložiti njegov namen in ga izdelati,</td>
<td>- prikazati, da se snovi na soncu segrejejo, če vpijajo sončno svetlobo,</td>
<td></td>
</tr>
<tr>
<td>- pojasniti pomen sklenjenega cevja centralnega ogrevanja ter vode, ki v njem kroži in prenaša toploto,</td>
<td>- razložiti, da sončna svetloba ogreva tla in da tla ogrevajo zrak,</td>
<td></td>
</tr>
<tr>
<td>- ugotoviti razlike med pretakanjem tekočin po koritih in cevih,</td>
<td>- ugotoviti, da se da najbolj grejejo, ko padajo sončni žarki pod pravim kotom,</td>
<td></td>
</tr>
<tr>
<td>- skicirati, oblikovati in graditi modele cevja in korit,</td>
<td>- pojasniti razliko med ogrevanjem prisojnih in osojnih bregov,</td>
<td></td>
</tr>
<tr>
<td>- opisati porabnike električnega toka v šoli in doma,</td>
<td>- ugotoviti, da se voda segreva, ko vpija sončno svetlobo.</td>
<td></td>
</tr>
<tr>
<td>- ugotoviti koristnost varčevanja z elektriko.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preglednica 10.2: Operativni cilji pri predmetu TIT, ki so povezani s SSE ali sončno energijo [76].

<table>
<thead>
<tr>
<th>TIT</th>
<th>7. razred</th>
<th>8. razred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vsebina: Dopolnitev znanja Električni krog, viri</td>
<td>Vsebina: Proučevanje motorja z notranjim zgorevanjem: zgradba in delovanje motorja z notranjim zgorevanjem</td>
<td></td>
</tr>
<tr>
<td>Operativni cilj</td>
<td>Učenci znajo:</td>
<td>Operativni cilj</td>
</tr>
<tr>
<td>- prikažejo pomen električne energije za razvoj civilizacije in vpliv njene proizvodnje na obremenitev okolja,</td>
<td>- uvrstijo fosilna goriva med neobnovljive vire energije, proučijo vplive motorizacije na okolje in utemeljijo ukrepe za zmanjševanje negativnih vplivov.</td>
<td></td>
</tr>
<tr>
<td>- predstavijo možnosti za alternativno pridobivanje električne energije.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preglednica 10.3: Operativni cilji pri predmetu Naravoslovje, ki so povezani s SSE ali sončno energijo [83].

NARAVOSLOVJE

6. razred

Vsebina: Sonce – osnovni vir energije na Zemlji

Operativni cilj
Učenci:
- razumejo, da je sončna energija osnovni vir energije, nujno potreben za vzdrževanje življenja na Zemlji,
- spoznajo, da je v biomasi in fosilnih gorivih nakopčena sončna energija, ki se je v osnovi pri fotosintезi,
- spoznajo in razumejo, da hidroelektrarne in vetrne elektrarne posredno poganja sončna energija, geotermalna in jedrska energija pa sta neodvisni od sončne energije,
- razlikujejo med OVE (npr. sončna energija, energia vetra, potencialna energija vode, geotermalna energija) in neobnovljivimi viри (fosilna goriva), ki jih mnogo hitreje porabljamo kot v naravi nastajajo,
- spoznajo prizadevanja ter možnosti za uporabo OVE

Vsebina: Vplivi človeka na okolje – Pomen učinkovitega izkoriščanja naravnih virov surovin in energije

Operativni cilj
Učenci:
- spoznajo problematiko omejenosti in prekomernega izkoriščanja naravnih virov vode, surovin in goriv ter se zavedajo nujnosti gospodarnega ravnanja z njimi,
- razumejo pomen učinkovitega ravnanja z energijo, utemeljujejo potrebo po zmanjševanju porabe energije in ugotavljajo načine varčevanja z energijo,
- spoznajo, da moramo pri vrednotenju učinkovitosti in posledic izkoriščanja naravnih virov upoštevati poleg ekonomskih tudi okoljske kriterije (npr. onesnaževanje ozračja, toplotno onesnaževanje ozračja, toplotno onesnaževanje voda zaradi jedrskih elektrarn, posledice zaježitev),
- razumejo, da pridobivanje in predelava energetskih in drugih naravnih virov vplivata na okolje (npr. rudniki, kamnolomi).

7. razred

Vsebina: Svetloba in barve

Operativni cilj
Učenci:
- spoznajo, da svetloba energija lahko povzroča segrevanje snovi, spremembe agregatnega stanja, spremembe snovi (npr. fotosinteza, porumenitev časopisnega papirja), da lahko poganja električni tok (npr. sončne celice v žepnem računalu),
- spoznajo, da se svetloba na meji dveh snovi deloma odbije, deloma lomi,
Preglednica 10.4: Operativni cilji pri predmetu Fizika, ki so povezani s SSE ali sončno energijo [77].

<table>
<thead>
<tr>
<th>FIZIKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. razred</td>
</tr>
<tr>
<td>Vsebina: Delo in energija</td>
</tr>
<tr>
<td>Operativni cilj</td>
</tr>
<tr>
<td>Učenci:</td>
</tr>
<tr>
<td>- ugotovijo, da je Sonce glavni vir energije na Zemlji,</td>
</tr>
<tr>
<td>- presodijo in opredelijo, kateri viri energije so obnovljivi in kateri ne,</td>
</tr>
<tr>
<td>- razložijo, zakaj je prejeta energija od Sonca odvisna od letnega časa,</td>
</tr>
<tr>
<td>- predstavijo načine varčne rabe energije,</td>
</tr>
<tr>
<td>- razložijo, kako pridobivanje energije, ki je pogosto povezana s sežiganjem, vpliva na okolje in onesnaževanje.</td>
</tr>
</tbody>
</table>

Vsebina: Toplota in notranja energija

Operativni cilj
Učenci:
- s poskusom raziskovati zakonitosti prehajanja toplote (E),
- razložijo, kako pridobivanje energije, ki je pogosto povezana s sežiganjem, vpliva na okolje in onesnaževanje.

Preglednica 10.5: Operativni cilji pri predmetu Biologija, ki so povezani s SSE ali sončno energijo [82].

<table>
<thead>
<tr>
<th>BIOLOGIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. razred</td>
</tr>
<tr>
<td>Vsebina: Vplivi človeka na naravo in okolje</td>
</tr>
<tr>
<td>Operativni cilj</td>
</tr>
<tr>
<td>Učenci:</td>
</tr>
<tr>
<td>- spoznajo vzroke in posledice globalnega segrevanja (okrepljen učinek tople grede).</td>
</tr>
</tbody>
</table>

10.2 UČNA PRIPRAVA

| UČNA PRIPRAVA |

I. SPLOŠNI EVIDENČNI PODATKI

Izvajalec: Darinka Petrina
Šola:
Razred: 9.
Predmet: Tehnika in tehnologija
Mentor:
Datum nastopa:
Ura (hh:mm): 5 h
Učna tema:
Učna enota: Sprejemniki sončne energije (SSE)

II. OPERATIVNI CILJI DIDAKTIČNE ENOTE

Izobraževalni cilji
Učenci:
1: poznajo pojem SSE in ugotovi funkcijo posameznega sestavnega dela.
2: razumejo princip delovanja SSE.
3: izdelajo model ploščatega SSE.
I4: izdelajo model vakuumskega SSE.
I5: izdelajo model hranilnika toplote (HT).
I6: izdelajo model solarnega sistema s ploščatim oz. vakuumskim SSE.
I7: razumejo princip delovanja preprostega solarnega sistema.
I8: preizkušajo delovanje preprostega solarnega sistema s ploščatim oz. vakuumskim SSE.
I9: analizirajo delovanje preprostega solarnega sistema s ploščatim oz. vakuumskim SSE.
I10: primerjajo razlike v delovanju ploščatega in vakuumskega SSE.
I11: vrednoti funkcionalnost naprave.

Vzgojni cilji
Učenci:
V1: razvijajo sposobnost poslušanja.
V2: razvijajo sposobnosti za samostojno delo.
V3: razvijajo kritičen odnos do dela.
V4: oblikujejo sposobnosti za delo v skupini.
V5: se zavedajo pomena varnega delovnega mesta.

Psihomotorični cilji
Učenci:
P1: si razvijajo ročne spremnosti in delovne navade.
P2: pravilno rokujejo z orodjem.
P3: razvijajo sposobnosti opazovanja postopkov.
P4: razvijajo natančnost pri uporabi merilnih instrumentov.

Cilji (izobraževalni/standardi) iz predhodnih razredov ali preteklih učnih ur
Učenci:
C1: razumejo, da je sončna energija osnovni vir energije, nujno potreben za vzdrževanje življenja na Zemlji.
C2: spoznajte prizadevanje, da je svetlobna energija lahko povzročila segrevanje snovi.
C3: razumijo, da je sončna energija vode, ki v njem kroži in prenaša toploto.
C4: znajo, da je sončna energija učna navada.
C5: znajo pojasnoti razliko med ogrevanjem prisojnih in osojnih bregov.
C6: znajo pojasnoti pomen sklenjenega cevja centralnega ogrevanja ter vode, ki v njem kroži in prenaša toploto.
C7: znajo opisati rezervoar (zbiralnik), razložiti njegov namen.

III. MIKROARTIKULACIJA DIDAKTIČNE ENOTE

Tip učne ure: Obravnavna nove učne snovi,
Učne oblike: Frontalna, skupinsko delo
Učne metode: Verbalna (razgovor, razlaga), praktično delo, delo z besedilom (učni list), opazovanje in proučevanje delovanja preprostega solarnega sistema
Strategija pouka: Delovna naloga, učenje z vodenim odkrivanjem
Delovne tehnike: Poslušanje, praktično delo z orodji in pripomočki, preizkušanje, opazovanje, zapisovanje
Novi pojmi in posplošitve: SSE, HT, solarni sistem, distančnik, tesnjenje
Korelacija: Fizika
Učila/pripomočki: Elektronske prosojnice in projekcijski sistem, model solarnega sistema s ploščatim SSE, model solarnega sistema z vakuumskim SSE, učni list 1- Izdelovanje ploščatega oz. vakuumskega SSE, učni list 2 - Preizkušanje ploščatega oz. vakuumskega SSE, stoparica, merilnik temperature

Orodja, naprave in stroji
Zariso in merilno orodje: svinčnik, zarisovalna igla, žlebilo, kovinski merilni trak, kotnik
Obdelovalno orodje: nož za karton, lokasta žaga za kovino, luknjač premera 10 mm, kladivo iz umetnih snovi
Naprave: topotla lepilna pištola
Stroji:
Vrtalni stroj s stojalom, vijačni sveder, premer 10 mm, spiralni sveder, premer 40 mm

Gradiva (materiali):
Aluminijast pekač za enkratno uporabo, mehka bakrena cev, izolacijski material (ekspandirani polistiren, polietilenska blazina), lepenka, PVC folija (za živila ali celofan), črna barva v spreju, lepilo za papir/les, polimerizacijsko lepilo (univerzalno UHU lepilo), lepilni vložki za pištolo za vroče lepljenje, posoda za vodo (jeklena pločevinka 12), PVC cev, (glede mer glej prilogo V. 6 – V. 7)

Varstvo pri delu:
Delovna halja, zaščitna podloga, zaščitna očala, pokrivalo, priloge V. 2 – V. 5,

Literatura:
Za učenca:

Za učitelja:
[8] B. Aberšek in ostali, Tehnika 8, Priročnik za učitelje (Ljubljana, DZS, 2001),

IV. POTEK UČNE URE

Pozdravljeni! Sem Darinka Petrina in danes bom jaz vaša učiteljica. Učiteljica Helena vam je nazadnje povedala, kakšna je tema današnjega tehnškega dne, kaj bomo delali ter naročila, kaj prinesite sabo, tako da zmanjšamo stroške izdelave modela sprejemnika sončne energije, ki ga bomo označevali s kratico SSE.

Učenci pozorno poslušajo (VI).

I UVAJANJE (10 min)
1.1 Mobilizacija znanja

Tema današnjega tehnškega dne je sončna energija in sprejemniki sončne energije. Za začetek bomo na kratko ponovili, kaj ste se že učili o sončni energiji.

12 S kositrovim slojem za zaščito pred rjavenjem.
VI

C1: Kaj je sončna energija?

C3: Kakšno lahko ogrevamo s sončno energijo? Ali je v Sloveniji dovolj sončne energije, da bi samo z njo ogrevali prostore (tj. v prehodnih in v zimskem obdobju)? Kdaj in za kaj jo lahko po vašem mnenju izkoriščamo?

C4: Povedali ste, da sončno energijo pretvarjamo v toplotno ter s katerimi napravami jo lahko pretvarjamo v električno energijo ter s katerimi v toplotno?

C5: Ali je vseeno, kje imamo postavljene SSE? Ali je njihova lega legomembna?

C6: Kako s SSE segreva vodo, še ne veste. Učili ste se že, kako voda v zaprtjem sustavu centralne kuruje prenaša toploto. Kako?

C7: Čemu služijo pa zbiralniki (hrami, rezervoarji)? Kakšna mora biti lega zbiralnika, da voda teče od vodovodnega števca po ceveh do pipe? Višje ali nižje od pipe?

Z metodo razgovora preverim predznanje učencev in jih spodbudim, da začnejo sodelovati.

1.2 Motivacija/Postavitev problema

Moja babica, ki živi nedaleč stran od vas v manjši hiši, je slišala od sosede, da veliko privarčuje, odkar segreva vodo s SSE. Povedala ji je tudi, da obstajata dva tipa SSE. Ker ve, da se v šoli marsicaj novega naučite, se je obrnila na vas, da ji pomagate pri odločitvi, katere SSE naj kupi. Kako bi jo na preprost način preprečili, kateri tip SSE je boljši? (Naredili bi preprost model ploščatega in vakuumskega SSE ter ju preizkusili. S pomočjo rezultatov bi ji svetovali, katere naj kupi.)

Z metodo razgovora ugotovim, ali znajo priti do pravilnega odgovora.

1.3 Napoved in utemeljitev učnega smotra

To bo vaša današnja naloga:

- izdelati model ploščatega oz. vakuumskega SSE,
- izdelati model hranilnika toplotne (krajše HT),
- povezati SSE in HT v solarni sistem ter
- testirati in primerjati solarno sistema s ploščatim in vakuumskim SSE (ob primernem vremenu ali z močnejšim reflektorjek).

Morda se sliši zahtevno, vendar bomo, predno se lotite izdelave, naredili kratek teoretični uvod, da usvojite osnovna znanja, ki jih boste potrebovali pri delu.

Učenci pozorno poslušajo (V1).

2 USVAJANJE (30 min)

2.1 Teoretični uvod

Ali veste, zakaj je sončna energija zanimiva za znanstvenike, strokovnjake? (Sončna energija je zanimiva, ker je to trajen in brezplačen vir energije.)

Od treh različnih učencev napišem njihove odgovore na tablo, ki jih nato skupaj analiziramo in vrednotimo.

Zanimiva je tudi zato, ker je letna količina sončne energije, ki prispe na površino Zemlje, več kot 8.000 krat večja od svetovne porabe po primarni energiji.
Kar nekaj smo že povedali o sončni energiji. Katere so njene prednosti in slabosti?

Omenili smo SSE. Ste jih že videli na kakšni strehi oz. jih morda imate celo doma? (Da.)

I1: Kaj je njegova naloga oz. za kaj se uporablja?

_Z metodo pogovora/razlage oblikujemo definicijo SSE (I1) - prosojnica 3.

Ali kdo ve, kakšna sta osnovna tipa SSE? (Ploščati in vakuumski.)

_Učenci razmišljajo o pravilnem odgovoru, ugotavljajo.

Poznamo več vrst SSE. Osnovna tipa sta dva, in sicer ploščati in vakuumski SSE. Preprosta modela obeh SSE, kot ju vidite na mizi, boste izdelali vi. To sta modela dejanskih naprav, ki se uporabljajo v vsakdanjem življenju. Oba sta sestavljena iz 4 osnovnih elementov: absorber, prozorna kritina, toplotna izolacija ter ohišje.

_Učenci poslušajo (V1). Z metodo razlage in demonstracije učence seznanim s snovjo (P3). Na obeh modelih jim pokažem sestavne elemente SSE, hkrati pa lahko vidijo sestavne elemente na elektronski prosojnici - prosojnica 4.

Kdo ve, kakšna je funkcija posameznega elementa SSE?

_Z metodo razgovora skupaj dopolnimo tabelo (I1) - prosojnica 5.

Izvedeli ste, kaj je SSE, kako je zgrajen ter kakšna je osnovna naloga posameznega elementa. Povedali smo tudi, da se voda v njem segreje, ko ga postavimo na sonce. Sedaj pa vse to strnimo v celoto in mi povejte, kako deluje SSE. (I2).

Učenci pozorno poslušajo in opazujejo (V1, P3).

Kakšna mora biti lega HT, da bo hladna voda, ki jo bomo natočili notri, pritekla v SSE? (Zbiralnik.)

_Pravilno, samo da ga v našem primeru imenujemo hranilnik toplote, ki ima zelo pomembno vlogo. Kot že ime pove, se v njem shranjuje toplata voda, ki jo uporabljamo za umivanje, prhanje, pomivanje posode ipd. Označevali ga bomo s kratico HT. S cevjo povežemo sedaj naš SSE s HT (demonstriramo). Ko smo to naredili, smo dobili solarni sistem za pripravo tople vode. Dopolnimo tabelsko sliko (priloga V. 1).

Učenci pozorno poslušajo in opazujejo (V1, P3).

Kakšna mora biti lega HT, da bo hladna voda, ki jo bomo natočili notri, pritekla v SSE? (HT mora ležati višje od SSE.)

_Učenci sodelujejo v pogovoru.

Super. Torej, hladna voda iz HT priteče v SSE, se tam segreje in se vrne nazaj v HT. Zakaj? (Ko se voda segreje, se razširi, postane redkejša in ima manjšo gostoto, zato se pomika navzgor nad hladno vodo.)

Tako je. Kdo mi bo to, kar smo sedaj povedali, še enkrat ponovil? Torej, kako s solarnim sistemom pripravimo toplato vodo? Z dvigom rok. (Hladna voda iz HT priteče v SSE. SSE obseva sonce, absorber se segreje in prenese toploto tekočini, ki kroži po cevi, ki je privarjena s spodnje strani. Segreta tekočina postane redkejša in se po cevi dviga nazaj v HT, kjer odda toploto in se hladna in gosteje še spusti v SSE. Krog se ponovi.)

_Učenci poslušajo in odgovorijo na vprašanje (I7).
Super! Je še kakšno vprašanje?

Če učencem še kaj ni razumljivega, vprašajo, sicer nadaljujejo z delom.

2.2 Delovni prostor in varnost pri delu (V5, P1, P2)
Pri izdelovanju solarnega sistema gre za veliko praktičnega dela in veliko različnih pripomočkov, zato je potrebno upoštevati pravila za varnost pri delu. Z večino orod je delali, vendar bo vseeno vsaka skupina dobila navodila za varnost pri delu, ki jih morate upoštevati (priloge V. 2 – V. 5).

Skupaj z učenci ponovimo, katere varnostne pripomočke bodo uporabili pri delu. Vsaka skupina vzame navodila za varnost pri delu (priloge V. 2 – V. 5).

2.3 Priprava na delo
Sedaj se boste razdelili v skupine po štiri. Če bodo nesoglasja, vas bom razdelila jaz. Polovica skupin bo izdelovala modele ploščatega SSE, polovica pa vakuumskega SSE. Ker boste SSE povezali v solarni sistem, boste za vsak SSE izdelali tudi HT. Prosportica 6. To pomeni, da dva učenca v vsaki skupini izdelujeta SSE, dva pa HT. Vsaka skupina bo dobila navodila za izdelavo – učni list Delovna naloga z ustreznim operacijskim listom ter tehniško in tehnološko dokumentacijo. Ko boste končali z delom, vsak vam bo učenca tudi učni list (priloga V. 16, V. 18), ki ga rešite kot ekipa (priloga V. 17, V. 19). Nato ga bomo skupaj pregledali.

Učenci pozorno poslušajo navodila (V1). Razdeljeno se v skupine po štiri.

K meni naj pride predstavnik vsake skupine, ki bo s pomočjo žreba izbral, kateri model SSE bo skupina izdelovala.

Učenci s pomočjo žreba izberejo, kateri model bo izdelovali. Razdelimo jim navodila za izdelavo SSE – učni list Delovna naloga z ustreznim operacijskim listom (priloga V. 6 – V. 12) ter tehniško in tehnološko dokumentacijo (priloga V. 13 – 15).

Kot že rečeno, boste delali po naslednjem vrstnem redu.

Projiciram prosojnic 7.

Še ena informacija: pri izdelavi vakuumskega SSE boste potrebovali distanjnik. To je predmet, v vašem primeru iz ekspandiranega polistirena, ki drži določen razmik med steklenima cevema (pokažemo na modelu).

Sedaj pa si vzemite potreben material in začnite z izdelavo.

Učenci pozorno poslušajo (V1). Vsaka skupina vzame material za izdelavo modela ter prične z delom.

3 URJENJE (65 min)
3.1 Izdelava SSE in HT (I3-I5, V2 – V4, P1-P2)
Med delom hodim po razredu, preverjam, ali vsi delajo, ali delajo pravilno, po potrebi svetujem in pomagam pri izdelavi SSE in HT in uporabi vrtalnega stroja. Učence spodbujam, da so natančni.

Učenci izdelujejo model SSE in HT. Pri tem si pomagajo z operacijskim listom, priloga V. 8 – V. 10, ter tehnično in tehnološko dokumentacijo, priloga V. 13 – 15.

3.2 Povezovanje SSE in HT v solarni sistem (I6-I7, V2 – V4, P1)
Med delom hodim po razredu, preverjam, če delajo pravilno.

Učenci povezujejo SSE in HT v solarni sistem. Pomagajo si z operacijskim listom (priloga V. 11 – V. 12) ter tehnično in tehnološko dokumentacijo (priloga V. 13 – 15).
Kdor je končal z delom, oz. skupina, ki je končala, pospravi svoje delovno mesto.

Učenci pospravljajo svoje delovno mesto.

4 PREVERJANJE (10 min)
Kdor je končal z delom in pospravil svoje delovno mesto, vzame Učni list 1 ter ga reši.

Učenci rešujejo Učni list 1 ločeno. Če česa ne vedo, lahko sodelujejo med seboj (ali znova skupine ali med skupinami). Učne liste odloži na katedru. Priloga V. 16, V. 18.

Ko učenci rešijo učni list, ga skupaj pregledamo, razložimo morebitne nejasnosti ter popravimo nepravilnosti (priloga V. 17, V. 19).

5 NAVEZAVA NA PREIZKUŠANJE SOLARNIH SISTEMOV (2 min)
Ko bo sončen dan (tudi, če bo hladno, samo da je sončno ali pretežno sončno), bomo odšli na šolsko igrišče, kjer bomo modele oz. solarne sisteme testirali.

Učenci poslušajo.

6 POSTAVITEV PROBLEMA OZIROMA VPRAŠANJA (10 min)
Vsaka skupina je izdelala model SSE, ki ga je povezala v solarni sistem. Prišli smo do polovice rešitev problema, ki smo si ga zadali na začetku. Prevedem se babica odloči za nako (akup)

vsak skupini, kar nekaj skrbi in vprašanj. Pomagali ji boste tako, da boste odgovorili na njena vprašanja. Vprašanja so napisana na učnem listu 2 (priloga V. 21). Pri vsaki nalogi je tudi nekaj podvprašanj, ki vas bodo vodilo k njenem delu. Večino nalog boste izvedli praktično, to pomeni z modelom, ki ste ga izdelali, merilnikom temperature ter štoparico. Tako boste babici pomagali, da se pravilno odloči.

7 IDEJE ZA RAZISKOVANJE TEME (V1 – V4) (20 min)
Sedaj se razdelite v skupine tako, kot ste bili pri izdelovanju SSE. Vprašanja ste dobili. Vaša naloga je, da razmislite, kako boste te probleme rešili. Možne odgovore zapisujte na list papirja. V vsaki skupini izberite vodjo, ki bo po 10 minutah ideje predstavil sošolcem.

Sedaj boste svoje ugotovitve za rešitev naloge predstavili ostalim sošolcem. Začela bo skupina S1, nato sledi skupina S2 itn. Ostali dobro poslušajte, ker boste na koncu ocenili glede na kreativnost in časovno iznajdljivost.

Po 10 minutah vodja skupine predstavi njihove ideje za rešitev problema ostalim sošolcem (V. 22). Ideje skupin zapisujemy na tablo. Ko vsi predstavijo svoje ideje, z metodo razgovora ovrednotimo, katera izmed idej je najprimernejša za rešitev problema.

8 PRIDOBIVANJE IN INTERPRETACIJA PODATKOV (I8, V2 - V4, P3 – P4) (70 min)
Sedaj boste začeli z delom. Delali boste v skupinah, v katerih ste že sedaj. Vsaka skupina vzame svoj model s SSE, štoparico in merilnik temperature, odgovore na problemska vprašanja pa boste zapisali na učni list 3 (priloga V. 23 oz. V. 25). Da boste lažje pisali na učne liste, s sabo vzemite tršo podlago (mapo, knjigo ali kaj podobnega).

Vsaka skupina vzame svoj model s SSE, merilnik temperature in štoparico. Vsak učenec pa dobij tudi Učni list 3(priloga V. 23 oz. V. 25) na katerega bodo zapisovali rešitve. Odidejo na šolsko igrišče.
Učitelj hodi od ene skupine do druge, opazuje in pomaga, če je potrebno. Skupine usmerja in vodi do zaključka. Pri tem je pomembno, da jim ne poda pravilnih odgovorov, ampak jih samo spodbudi z dodatnimi vprašanjami, namigi in nasveti.

Skupine začnejo z reševanjem Učnega lista 3 (priloga V. 23 oz. V. 25).

9 SLEP IN IZMENJAVA INFORMACIJ (I9 – I11, V1 – V4) (20 min)

Še enkrat preglejte pridobljene informacije. Pogovorite se med seboj ter zapišite zaključke (priloga V. 24 oz. V. 26). Ko končate, bom vsakemu učencu v skupini dodelila številko od ena do štiri. Glede na te številke boste oblikovali nove skupine (prvo, drugo, tretjo in četrto), v katerih si boste izmenjali podatke in sklepe. Med seboj se boste pogovorili o nalogah ter vprašanjih pri posameznih nalogih.

Učenci glede na dodeljene številke oblikujejo nove skupine. Med seboj si izmenjavajo informacije, se pogovorijo in naredijo zaključke (priloga V. 24 oz. V. 26).

10 RAZREŠITEV NESPORAZUMOV IN ZAPIS ZAKLJUČKOV (I9, V1) (20 min)

Sedaj bo vsaka skupina predstavila po eno nalogo. Začela bo skupina S1, S2 ... Učenci predstavijo svoje ugotovitve.

Učitelj vodi razpravo. Če so učenci kaj narobe razumeli, jim nejasnosti razloži. Poskrbi tudi, da imajo na učnem listu vsi učenci pravilno zapisano.

Skupaj z učiteljem pregledajo Učni list 3.

Kakšen je torej odgovor na babičino vprašanje, ki sem ga vam podala na začetku TD glede na rezultate preizkusa? Kateri tip SSE je boljši? Ploščati ali vakuumski? *(Vakuumski SSE je boljši.)*

V. PRILOGE

V. 1 Elektronske prosojnice – oblika ppt (Tabelska slika)

V. 2 Priprava delovnega mesta
Kaj mora učitelj storiti pred praktičnim delom, je predstavljeno v spodnjih alinejah:

- Preverimo prvo pomoč.
- Pripravimo in preverimo brezhibno delovanje strojev in naprav.
- Pripravimo osebna zaščitna sredstva za učence.
- Učencem opozorimo na varno ravnanje v tehnični učilnici (ni tekanja, zadržujejo se v bližini svojega delovnega mesta, na mizi imajo le toliko stvari, kot jih nujno potrebujejo za delo, delo s strojem dovoljeno izključno pod učiteljevim nadzorom, po končanem delu preveri, če je stroj izklopljen, ga počisti, zapusti ter poskrbi za osebno higieno).
- Učencem pokažemo obvezno osebna zaščitna sredstva (delovna halja ali predpasnik, zaščitna očala, zaščitne rokavice, zaščitno pokrivalo, speta obleka in lasje), ki jo bodo rabili pri delu,

V. 3 Navodila za pravilno in varno uporabo žage za kovino, lokaste
Navodila za varno uporabo lokaste žage za kovino so predstavljena v spodnjih alinejah:

- Pred začetkom žaganja preverimo žagin list. Če list ne ustreza, ga zamenjamo, lahko po izberemo tudi drugo žago za kovine.
Obdelovanec trdno vpmemo – uporabimo primež ali spono. Pred vpenjanjem ga zaščitimo z mehkejšo kovino, da ga ne poškodujemo.

Del, kjer je rez na obdelovancu, vpmemo čim bližje čeljustim primeža oz. spone, da ne vibrira.

Vpetje mora biti samo na eni strani, drugi konec mora prosto viseti, da nam ne stiska lista.

Na obdelovancu odmerimo želeno mesto reza s trikotno piło ter zažagamo, kar nam omogoči, da se žaga ob začetku rezanja ne premika po obdelovancu.

Stopimo v razkorak, da imamo stabilno držo, na označeno mesto postavimo žago ter začnemo rezati.

Žago držimo z desno roko za ročaj, z levo pa na nasprotni strani loka (obratno, če smo levičarji).

Vedno uporabimo celoten hod lista, ker se v nasprotnem primeru obrabi le na enem mestu, lahko se tudi pregreje. Slednje se lahko zgodi tudi pri koriščanju stanovanja, če žagamo prehitro.

Če se med vrtanjem sveder zatakne, izklopimo stroj in sveder izvlečemo, ko se stroj ustavi.

Nož pri rezanju nagnemo, da z gradivom oklepa kot 30° do 45°. Nož mora biti vedno nagnjen v smeri rezanja.

Desničarji režejo od leve proti desnemu, levičarji pa obratno.

V. 4 Navodila za pravilno in varno uporabo vrtalnega stroja
Navodila za varno uporabo vrtalnega stroja so predstavljena v spodnjih alinejah:

- Najprej na obdelovancu z mizarskim svinčnikom označimo mesto vrtanja.

- Nato na vrtalnem stroju preverimo, ali je sveder dobropotni vpet v vpenjalno glavo. Preveriti moramo tudi vstopnik, da je vstopnik odstranjen iz vpenjalne glave.

- Oblečemo si predpasnik, spnemo dolge lase in si nadenemo zaščitna očala. Če nosimo ohlapna oblačila, si zavihamo rokave. Odstranimo tudi nakit.

- Pred vrtanjem preverimo brezhibno delovanje vrtalnega stroja.

- Če je obdelovanec majhen, ga vpnemo v strojni primež (Pri vpenjanju uporabimo koščke lesa, da zaščitimo obdelovanec.). Če je obdelovanec velik, ga prepravimo na mizarsko spono. Obdelovanca ne smemo držati z roko.

- Nastavimo primerno višino stojala.

- Če se med vrtanjem sveder zatakne, izklopimo stroj in sveder izvlečemo, ko se stroj ustavi.

- Po vrtanju pospravimo odpaden material in očistimo vrtalni stroj.

- Na koncu pospravimo šele sveder. To storimo šele takrat, ko se le-ta ovladi.

V. 5 Navodila za pravilno in varno uporabo noža za karton
Navodila za varno uporabo noža za karton so predstavljena v spodnjih alinejah:

- Pred začetkom dela priskrbimo podlagi za zaščito mize, primerno pripravljeno orodje za delo ter pripravimo pripomočke, ki jih potrebujemo pri rezanju.

- Podlaga za zaščito mize mora biti iz debelejše lepenke (debelina najmanj 2 mm) ali deska iz trdega lesa, ki mora biti ravnina in gladka.

- Pred začetkom rezanja na karton oz. lepenko, ki jo bomo rezali, označimo, kje bomo rezali.

- Režemo le z nožem, ki ima oster rezilni rob. Ko se rezilo obrabi, ga odlomimo.

- Pri rezanju noža vodo ob kovinskom vodilih, ker ravnata iz lesa ali umetnih snovi hitro nehote razpršiti in poškodujemo.

- Ravnala, ki ga držimo za ročaj, položimo ob črto in ga pritisnemo, da se med rezanjem ne premakne.

- Dolžina delovnega rezila naj bo dolga 2 do 3 segmente.

- Režemo vedno v vzmet, ko sede zmanjšano pritisk roke na vodilo in s tem varnost pri rezanju.

- Rez mora potekati v tem koraku in niste ravnata iz lesa ali umetnih snovi hitro nehote razpršiti in poškodujemo.

- Nož pri rezanju nagnemo, da z gradivom oklepa kot 30° do 45°. Nož mora biti vedno nagnjen v smeri rezanja.

- Desničarji režejo od leve proti desnemu, levičarji pa obratno.
Nikoli ne vlečemo rezila proti sebi, da se ne nabodemo.
Režemo počasi.
Gradivo obrnemo tako, da režemo od sredine proti robu kartona oz. lepenke.
Pri rezanju kartona in lepenke z nožem večkrat narahljo potegnemo po istem rezu in ne enkrat z veliko močjo. Pri tem prvi rez napravimo z manjšo močjo ter z njim naredimo vodilni rez za nadaljnje rezanje.
Ko nož za karton nehamo uporabljati, rezilo zapremo in šele potem nož odložimo na mizo in primerno shranimo.
Priporočeno je, da učenci pri rezanju z nožem za karton kot zaščitno opremo uporabljajo predпасnik, da zaščitijo oblačila, ni pa obvezno.

V. 6 Delovna naloga: Ploščati sprejemnik sončne energije povezan v solarni sistem

Delovna naloga: PLOŠČATI SPREJEMNIK SONČNE ENERGIJE (krajše SSE) POVEZAN V SOLARNI SISTEM

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PLOŠČATI SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naziv</td>
<td>Naziv</td>
</tr>
<tr>
<td>● aluminijast pekač za enkratno uporabo dim. 370 x 290 x 45 mm,</td>
<td>● lepenka, 485 x 405 x 4 mm</td>
</tr>
<tr>
<td></td>
<td>● PVC folija (za živila ali celofan), 400 x 320 mm</td>
</tr>
<tr>
<td>● 1 m dolga mehka bakrena cev (8 x 2 mm),</td>
<td>● polimerizacijsko lepilo (npr. univerzalno UHU lepilo),</td>
</tr>
<tr>
<td></td>
<td>● izolacijski material (ekspandiran polistiren), 380 x 300 x 4 mm, 300 x 42 x 4 mm (2 kom), 370 x 42 x 4 mm (2 kom)</td>
</tr>
<tr>
<td>● šablona za ohišje SSE iz penjenega PVC,</td>
<td>● lepilo za papir/les (npr. Mekol, 500 g),</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HRANILNIK TOPLOTE (krajše HT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naziv</td>
</tr>
<tr>
<td>● posoda za vodo (pločevinka, V ≥ 1 L),</td>
</tr>
<tr>
<td>● izolacijski material (polietilenska blazina), 340 x 115 x 4 mm, 105 x 105 x 4 mm</td>
</tr>
<tr>
<td>● lepenka, 532 x 386 x 4 mm,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORODJA, PRIPOMOČKI IN STROIJI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naziv</td>
</tr>
<tr>
<td>● nož za karton,</td>
</tr>
<tr>
<td>● kovinski merilni trak,</td>
</tr>
<tr>
<td>● svinčnik,</td>
</tr>
<tr>
<td>● permanentni flomaster,</td>
</tr>
<tr>
<td>● kotnik s prislonom,</td>
</tr>
<tr>
<td>● žlebilo,</td>
</tr>
</tbody>
</table>

NAVODILA ZA IZDELAVO – glej ustrezni Operacijski list

Izdelali boste enostaven model ploščatega SSE in HT, ki ju boste povezali v solarni sistem.
V. 7 Delovna naloga: Vakuumski sprejemnik sončne energije povezan v solarni sistem

Delovna naloga: VAKUUMSKI SPREJEMNIK SONČNE ENERGIJE (krajše SSE) POVEZAN V SOLARNI SISTEM

MATERIAL

<table>
<thead>
<tr>
<th>VAKUUMSKI SSE</th>
<th>Naziv</th>
<th>Naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>• steklenica (V = 1 L) za sok s pokrovom,</td>
<td>• 1,5 m PVC cevi (8 x 2 mm)</td>
<td></td>
</tr>
<tr>
<td>• črna barva v spreju,</td>
<td>• lepilni vložek za toplotno lepilno pištolo,</td>
<td></td>
</tr>
<tr>
<td>• steklen kozarec (V = 4 L) s pokrovom,</td>
<td>• distančnik iz ekspandiranega polistirena, 45 x 35 x 15 mm</td>
<td></td>
</tr>
<tr>
<td>• 0,5 m dolge mehke bakrene cevi (8 x 2 mm),</td>
<td>• lepilni vložek za toplotno lepilno pištolo.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HRANILNIK TOPOLTE (krajše HT)</th>
<th>Naziv</th>
<th>Naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>• posoda za vodo (pločevinka, V ≥ 1 L),</td>
<td>• šablona za ohišje HT iz penjenega PVC</td>
<td></td>
</tr>
<tr>
<td>• izolacijski material (polietilenska blazina), 340 x 115 x 4 mm, 105 x 105 x 4 mm</td>
<td>• 1,50 m PVC cevi (8 x 2 mm),</td>
<td></td>
</tr>
<tr>
<td>• lepenka, 532 x 386 x 4 mm,</td>
<td>• lepilni vložek za toplotno lepilno pištolo.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORODJA, PRIPOMOČKI IN STROJI</th>
<th>Naziv</th>
<th>Naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>• nož za karton,</td>
<td>• žlebilo,</td>
<td>• vijačni sveder, premer 10 mm</td>
</tr>
<tr>
<td>• kovinski merilni trak,</td>
<td>• luknjač, premer 10 mm,</td>
<td></td>
</tr>
<tr>
<td>• svinčnik,</td>
<td>• kladivo iz umetne snovi,</td>
<td>• spiralni sveder, premer 40 mm</td>
</tr>
<tr>
<td>• permanentni flomaster,</td>
<td>• točkalo,</td>
<td>• vrtalni stroj,</td>
</tr>
<tr>
<td>• kotnik,</td>
<td>• vzporedni primež,</td>
<td>• toplotna lepilna pištola,</td>
</tr>
<tr>
<td>• lokasta žaga za kovino,</td>
<td>• lesen nastavek, 30 x 30 x 80 mm</td>
<td>• ročna tlačilka za blazine (s funkcijo polnjenje/praznjenje zraka).</td>
</tr>
</tbody>
</table>

NAVODILA ZA IZDELAVO – glej ustrezen Operacijski list

Izdelali boste enostaven model vakuumskega SSE in HT, ki ju boste povezali v solarni sistem.
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Risba</th>
<th>Orodja, stroji, naprave in pripomočki</th>
<th>Delovne operacije</th>
<th>Navodila za delo</th>
</tr>
</thead>
</table>
| 1. | ![Risba](image1.png) | - Zarisovalna igla,
- kovinski merilni trak | Prenašanje mer na bakreno cev | Na bakreno cev (poz. 2) prenesi mere (mesti upogiba) z delavniške risbe. |
| 2. | ![Risba](image2.png) | - Orodje za krivljenje cevi ali
 - (železna cev, premer 114 mm,
 - vzporedni primež) | Krivljenje bakrene cevi | Z orodjem za krivljenje cevi (ali ob valjastem predmetu, npr. železni cevi) ukrivi bakreno cev (poz. 2) v obliki črke S. |
| 3. | ![Risba](image3.png) | - Kovinski merilni trak,
 - permanentni flomaster | Prenašanje mer na absorber | Absorber izdelaj iz aluminijastega pekača (poz 1). Na notranji strani označi mesti za dovodno in odvodno cev. |
| 4. | ![Risba](image4.png) | - Luknjač, premer 10 mm,
 - kladivo iz umetne snovi | Luknjanje absorberja | Izreži luknji na obeh daljših stranicah aluminijastega absorberja (poz. 1) za dovodno in odvodno cev nekaj mm širši kot je premer PVC cevi. |
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Polimerizacijsko lepilo</td>
<td>Lepljenje bakrene cevi</td>
<td>Vstavi bakreno cev (poz. 2) in jo prilepi na dno absorberja (poz. 1).</td>
</tr>
<tr>
<td>6.</td>
<td>Črna barva v spreju</td>
<td>Barvanje absorberja in bakrene cevi</td>
<td>S črno barvo prebarvaj bakreno cev (poz. 2) ter dno absorberja (poz. 1).</td>
</tr>
<tr>
<td>7.</td>
<td>Kovinski merilni trak, kotnik s prislonom, svinčnik</td>
<td>Prenašanje mer na izolacijo</td>
<td>Toplotno izolacijo izdelaj iz ekspandiranega polistirena. Na ploščo (ekspandiranega polistirena) nariši hrbtno – oplata 3 (poz. 6) in stranske ploskve – oplata 1-2 (poz. 3-4) ter mesti za dovodno in odvodno cev na daljših stranskih ploskvah (poz. 3).</td>
</tr>
</tbody>
</table>
| 8. | | • Kotnik s prislonom,
 • nož za karton | Izrezovanje izolacije - oplate 1-3 | Posamezne ploskve, tj. oplate 1–3 (poz. 3-4, 6) izreži z nožem za karton. |
|---|---|---|---|---|
| 9. | | • Kladivo iz umetne snovi,
 • luknjač, premer 10 mm | Luknjanje izolacije - oplate 1 | Na daljših stranicah (poz. 3) naredi luknjo za dovodno in odvodno cev. |
<p>| 10. | | • Lepilo za papir | Lepljenje izolacije - oplate 1-3 | Dno ter stranske ploskve aluminijastega pekača z zunanje strani premaži z lepilom za les in prilepi oplate 1-3 (poz. 3-4, 6). |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Svinčnik, šablona za ohišje SSE (penjeni PVC),</td>
<td>Prenašanje mer na ohišje ploščatega SSE</td>
<td>Ohišje za ploščati SSE (poz. 5) izdelaj iz lepenke. Mere ohišja prenesi s pomočjo šablone. Pregibna mesta označi s tanko črto ter označi mesti za dovodno in odvodno cev.</td>
</tr>
<tr>
<td>12.</td>
<td>Kotnik s prislonom, nož za karton,</td>
<td>Izrezovanje ohišja ploščatega SSE</td>
<td>Izrez ōhišja ploščatega SSE (poz. 5).</td>
</tr>
<tr>
<td>13.</td>
<td>Kotnik s prislonom, žlebilo</td>
<td>Žlebičenje ohišja ploščatega SSE</td>
<td>Kjer so tanke črte, naredi utor za pregib.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14.</td>
<td>● Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Luknjanje ohišja ploščatega SSE</td>
<td>Na daljših stranicah naredi luknji za dovodno in odvodno cev.</td>
</tr>
<tr>
<td>16.</td>
<td>● PVC folija, kovinski merilni trak, permanentni flomaster</td>
<td>Prenašanje mer na prozorno kritino</td>
<td>Na prozorno kritino (PVC folija) (poz. 7) prenesi mere z delavniške risbe.</td>
</tr>
<tr>
<td>17.</td>
<td>PVC folija, škarje za papir</td>
<td>Izrezovanje prozorne kritine</td>
<td>Izreži ustrezen prozorni kriticino (poz. 7).</td>
</tr>
</tbody>
</table>

V. 9 Operacijski list Izdelava vakuumskega SSE

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Risba</th>
<th>Pribor in orodje</th>
<th>Delovne operacije</th>
<th>Navodila za delo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kovinski merilni trak, zarisovalna igla.</td>
<td>Prenašanje mer na bakreno cev</td>
<td>Na bakreno cev (poz. 7) prenesi mere z delavniške risbe.</td>
<td></td>
</tr>
</tbody>
</table>
| 2. | ● Vzporedni primež,
 ● žaga za kovino, lokasta. | Žaganje bakrene cevi | Bakreno cev (poz. 7) prežagaj na dva enaka dela. |
|---|---|---|---|
| 3. | ● Kovinski merilni trak,
 ● permanentni flomaster | Prenašanje mer na PVC cev | Na PVC cevi (poz. 6) odmeri 75 mm dolg kos. |
| 4. | ● Nož za karton, | Rezanje PVC cevi | Odreži označeni kos PVC cevi (poz. 6). |
| 5. | ● (Sušilec za lase) | Spajanje U-cevi | Oba kosa bakrene cevi (poz. 7) poveži s 75 mm dolgo PVC cevjo (poz. 6), da dobiš U-cev. Če je potrebno, cev segrej z vročim zrakom (npr. sušilec za lase), da se lažje ukrivi oz. da ne pride do pregibov. |
6. Barvanje notranje cevi
Za notranjo stekleno cev uporabi steklenico za sok (poz. 3). Prebarvaj jo s črno barvo.

7. Kovinski merilni trak,
zarisovalna igla/permanentni flomaster
Prenašanje mer na pokrov notranje cevi
Na zunanj stran pokrova notranje cevi (poz. 4) prenesi mere z delavniške risbe za dovodno in odvodno cev.

8. Točkalo,
kovaško kladivo,
leseni nastavek (dim. 30 x 30 x 80 mm)
Točkanje
Mesti, kjer boste vrtali, zatočkaj (poz. 4).

9. Vrtalni stroj s stojalom,
vijačni sveder, premer 10 mm,
strojni primež,
leseni nastavek (dim. 30 x 30 x 80 mm)
Vrtanje
Izvrtaj dve enako veliki luknji za dovodno in odvodno cev oz. za U-cev (poz. 4).
| 10. | | ● Kovinski merilni trak,
● zarisovalna igla/permanentni flomaster | Prenašanje mer na pokrov zunanjega cevi | Za zunanje steklo cev uporabi steklen kozarec (poz. 1) s pokrovom (poz. 2). Na zunanjo stran pokrova zunanje cevi (poz. 2) prenesi mere z delavniške risbe. |
| 11. | | ● Točkalo,
● kovaško kladivo | Točkanje | Mesti, kjer boste vrtali, zatočkaj (poz. 2). |
| 12. | | ● Vrtalni stroj s stojalom,
● vijačni sveder, premer 10 mm,
● spiralni sveder, premer 40 mm,
● strojni primež | Vrtanje | Izvrtaj dve luknji tudi na pokrovu zunanjega cevi (poz. 2). Večjo na sredini, za notranjo steklo cev ter manjšo ob strani, za cev, skozi katero boste izsesali zrak. |
| 13. | | ● Polimerizacijsko lepilo | Lepljenje distančnika | Na dno notranje steklene cevi prilepi distančnik iz ekspandiranega polistirena (poz. 8). |
| 14. | **Toplotna lepilna pištola, lepilni vložek za pištolo za vroče lepljenje** | **Vstavljanje, tesnjenje** | V manjšo odprtino na pokrovu zunanje cevi (poz. 2) vstavi 60 cm dolgo PVC cev (poz. 9) ter spoj zatesni. |
| 15. | **Toplotna lepilna pištola, lepilni vložek za pištolo za vroče lepljenje** | **Tesnjenje** | Pokrov zunanje cevi (poz. 2) namesti na notranjo cev (poz. 3) ter spoj med pokrovom in notranjo cevjo zatesni z lepilom. Nato notranjo cev (poz. 3) vstavi v zunanjo cev (poz. 1), pokrov privij ter spoj med pokrovom (poz. 2) in notranjo cevjo (poz. 3) zatesni še z zunanje strani. |
| 16. | Toplotna leplilna pištola, leplilni vložek za pištolo za vroče lepljenje | Sestavljanje, tesnjenje | Vstavi U-cev (poz. 6-7) v pokrov notranje cevi (poz. 4) tako, da je 2-3 cm U-cevi nad pokrovom. Nato vse skupaj vstavi v zunanjo cev (poz. 1) ter zatesni. Kot tesnilo med U-cevjo in pokrovom notranje cevi lahko namesto vročega lepila uporabiš 2 cm dolg kos PVC cevi (poz. 5). |
| 17. | Ročna tlačilka za blazine (s funkcijo polnjenje/praznjenje zraka) | Izsesavanje zraka | Cev tlačilke nastavi za praznjenje zraka. V PVC cev (poz. 9) vstavi ustrezni nastavek, nato izsesaj zrak iz vmesnega prostora med zunanjost in notranjo cevjo. |
| 18. | PVC sponka | Tesnjenje | Prepogne PVC cev (poz. 9), ter jo zatesni s PVC sponko. |
V. 10 Operacijski list Izdelava HT

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Risba</th>
<th>Pribor in orodje</th>
<th>Delovne operacije</th>
<th>Navodila za delo</th>
</tr>
</thead>
</table>
| 1. | ![image](image1.png) | • Kovinski merilni trak,
• zarisovalna igla, | Prenašanje mer na HT | HT izdelaj iz jeklene pločevinaste posode (poz. 1). Z delavniške risbe prenesi mere za dovodno in odvodno cev. |
| 2. | ![image](image2.png) | • kovaško kladivo,
• točkalo,
• vzporedni primež,
• železna cev (premer 90 mm) | Točkanje | Na HT (poz. 1) zatočkaj mesti, kjer boste vrtali. Pri tem si pomagaj z železno cevjo. |

13 S kositrovim slojem za zaščito pred rjavenjem.
<table>
<thead>
<tr>
<th>3.</th>
<th>Vrtalni stroj s stojalom, vijačni sveder, premer 10 mm, strojni primež</th>
<th>Na HT (poz. 1) izvrtaj luknji za dovodno in odvodno cev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Okrogla pila</td>
<td>Ostre in nepravilno oblikovane robove popili.</td>
</tr>
<tr>
<td>5.</td>
<td>Kovinski merilni trak, permanentni flomaster</td>
<td>Na PVC cev prenesi mere z delavniške risbe (poz. 3-4 solarnega sistema s ploščatim SSE) oz. (poz. 11-12 solarnega sistema z vakuumskim SSE).</td>
</tr>
</tbody>
</table>
6. | • Nož za karton | Rezanje PVC cevi | Odreži ustreza kosa PVC cevi (poz. 3-4 pri solarnem sistemu s ploščatiim SSE) oz. (poz. 11-12 pri solarnem sistemu z vakuumskim SSE).

7. | • Toplotna lepilna pištola,
• lepilni vložek za pištolo | Sestavljanje, tesnjenje | Skozi vsako luknjo na HT vstavi PVC cev ter spoj med cevjo in posodo z zunanj strani zatesni z lepilom. Pri izdelavi HT za ploščati SSE je dovodna cev (poz. 4 pri solarnem sistemu s ploščatiim SSE) daljša od odvodne (poz. 3 pri solarnem sistemu s ploščatiim SSE), pri izdelavi HT za vakuumski SSE pa je dovodna cev kraja (poz. 11 pri solarnem sistemu z vakuumskim SSE).

8. | • Permanentni flomaster,
• kovinski merilni trak,
• kotnik s prislonom,
• šestilo | Prenašanje mer na izolacijo HT | Toplotno izolacijo (poz. 2, 4) izdelaj iz poliuretanske pene. Na peno nariši plašč, luknji za dovodno in odvodno cev (poz. 2) ter pokrov (poz. 4).
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kotnik s prislonom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Luknjač s premerom 10 mm,</td>
<td>Luknjanje</td>
<td>Na plašču naredi luknji za dovodno in odvodno cev (poz. 2).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kladivo iz umetne snovi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Toplotna lepilna pištola,</td>
<td>Lepljenje izolacije HT</td>
<td>Izolacijo HT (poz. 2) prilepi na pločevinasto posodo (poz. 1).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lepilni vložek za pištol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 12. | • Svinčnik,
• šablona za ohišje HT
(penjeni PVC), | Prenašanje mer na ohišje HT
Ohišje HT (poz. 3) izdelaj iz
lepenke. Mere za ohišje prenesi s
pomočjo šablone. Označi tudi
luknji za dovodno in odvodno cev
ter pregibna mesta. |
| 13. | • Kotnik s prislonom,
• nož za karton | Izrezovanje ohišja HT
Izreži ohišje HT (poz. 3). |
| 14. | • Kotnik s prislonom,
• žlebilo,
• žlebilo, | Žlebičenje ohišja HT
Na pregibih naredi utor zaradi
lažjega sestavljanja. |
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 15. | • Luknjač, premer 10 mm,
 • kladivo iz umetne snovi | Luknjanje ohišja HT | Naredi luknji za dovodno in odvodno cev (poz. 3). |
| 16. | • Svinčnik,
 • ravnilo | Prenos mer na izolacijski pokrov
 HT | Na pokrovu ohišja HT (poz. 3) označi mesto, kamor boste prilepili toplotno izolacijo za izoliranje HT z zgornje strani. |
| 17. | • Polimerizacijsko lepilo | Lepljenje izolacijskega pokrova | Na ohišje HT (poz. 3) prilepi izolacijski pokrov HT (poz. 4). |
| 18. | • Luknjač, premer 10 mm,
 • kladivo iz umetne snovi | Luknjanje izolacijskega pokrova
HT | Na izolacijskem pokrovu (poz. 4)
naredi luknjo za merilnik
temperature. |
| 19. | • Toplotna lepilna pištola,
 • lepilni vložek za pištolo | Sestavljanje, lepljenje HT | Izoliran HT postavi na lepenko. V
luknji na lepenki vstavi dovodno
in odvodno cev. Lepenko sestavi v
ohišje, stične robove pa zalepi. |
V. 11 Operacijski list Izdelava solarnega sistema s ploščatim SSE

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Risba</th>
<th>Pribor in orodje</th>
<th>Delovne operacije</th>
<th>Navodila za delo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>⬤</td>
<td></td>
<td>Odvodno (poz. 3 pri solarnem sistemu s ploščatim SSE) in dovodno cev (poz. 4 pri solarnem sistemu s ploščatim SSE) na HT poveži z bakreno cevjo SSE (poz. 2 pri ploščatim SSE).</td>
</tr>
</tbody>
</table>

V. 12 Operacijski list Izdelava solarnega sistema z vakuumskim SSE

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Risba</th>
<th>Pribor in orodje</th>
<th>Delovne operacije</th>
<th>Navodila za delo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>Špajanje</td>
<td>Odvodno (poz. 12 pri solarnem sistemu z vakuumskim SSE) in dovodno cev (poz. 11 pri solarnem sistemu z vakuumskim SSE) HT poveži z U-cevjo SSE (poz. 6-7 pri solarnem sistemu z vakuumskim SSE).</td>
</tr>
</tbody>
</table>
V. 13 Tehnična in tehnološka dokumentacija za solarni sistem s ploščatim SSE

<table>
<thead>
<tr>
<th>Poz.</th>
<th>Kos</th>
<th>Naziv</th>
<th>Dimenzije/Gradivo/Opomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>Prozorna krtina</td>
<td>PVC folija 400x320 mm</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Izolacija - oplata 3</td>
<td>ekspandirani polistiren</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Ohišje SSE</td>
<td>lepenka - 4 mm</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Izolacija - oplata 2</td>
<td>ekspandirani polistiren</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Izolacija - oplata 1</td>
<td>ekspandirani polistiren</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Bakrena cev</td>
<td>8x10 L=1000 mm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Absorber</td>
<td>Alu pokač za enkratno up.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15.04.2016</th>
<th>Darinka Petrina</th>
</tr>
</thead>
</table>

M 1:4

Ploščati SSE - poz. 1
OPOMBA: Narejeno iz ekspandiranega polistirena debeline 5mm.

<table>
<thead>
<tr>
<th>15.04.2016</th>
<th>Darinka Petrova</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 2:3</td>
<td>Izolacija t=5 - oplata 1</td>
</tr>
</tbody>
</table>

XXXV
OPOMBA: Narejeno iz ekspandiranega polistirenja debeline 5mm.

15.04.2016

| M 1:1 | Izolacija t=5 - oplata 2 |

XXXVI
OPOMBA: Narejeno iz ekspanziranega polistirena debeline 5mm.

M 1:2 Izolacija t=5 - oplata 3

15.04.2016 Darinka Petrina
LEGENDA:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GOR 90°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15.04.2016</th>
<th>Darinka Petrina</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 1:3</td>
<td>Ohišje ploščatega SSE t=4 - poz. 5</td>
</tr>
</tbody>
</table>

XXXVIII
XXXIX

<table>
<thead>
<tr>
<th>Poz.</th>
<th>Kos</th>
<th>Naziv</th>
<th>Dimenzije/gradivo/opomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>Dovodna PVC cev</td>
<td>10x14 L=850</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Odvodna PVC cev</td>
<td>10x14 L=600</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Hranilnik toplete - izoliran</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Ploščati SSE</td>
<td></td>
</tr>
</tbody>
</table>

15.04.2016 Daninka Petrina

M 1:4 Solarni sistem s ploščatim SSE
Ploščati SSE
XLI
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Poz.</th>
<th>Kos</th>
<th>Delovna operacija</th>
<th>Orodja, stroji, naprave in pripomočki</th>
<th>Gradivo</th>
<th>Zaščitna sredstva</th>
<th>Predviden čas (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>1</td>
<td>Prenašanje mer na bakreno cev</td>
<td>Zarisovalna igla, kovinski merilni trak</td>
<td>Mehka bakrena cev</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>1</td>
<td>Krivljenje bakrene cevi</td>
<td>Orodje za krivljenje cevi ali železna cev (premer 114 mm) in vzporedni primež</td>
<td>Mehka bakrena cev</td>
<td>Delovna halja</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>1</td>
<td>Prenašanje mer na absorber</td>
<td>Kovinski merilni trak, permanentni flomaster</td>
<td>Aluminijast pekač za enkratno uporabo</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
<td>Luknjanje absorberja</td>
<td>Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Alu-pekač</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>1,2</td>
<td></td>
<td>Lepljenje bakrene cevi</td>
<td></td>
<td></td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>1, 2</td>
<td></td>
<td>Barvanje absorberja in bakrene cevi</td>
<td></td>
<td></td>
<td>Delovna halja, očala</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>3, 4, 6</td>
<td></td>
<td>Prenašanje mer na izolacijo</td>
<td>Kovinski merilni trak, kotnik s prislonom, svinčnik</td>
<td>Ekspandiran polistiren</td>
<td>Delovna halja</td>
<td>10</td>
</tr>
<tr>
<td>8.</td>
<td>3, 4, 6</td>
<td></td>
<td>Izrezovanje izolacije – oplate 1-3</td>
<td>Kotnik s prislonom, nož za karton</td>
<td>Ekspandiran polistiren</td>
<td>Delovna halja, zaščitna podloga</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>2</td>
<td>Luknjanje izolacije – oplate 1</td>
<td>Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Ekspandiran polistiren</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>3, 4, 6</td>
<td></td>
<td>Lepljenje izolacije – oplate 1-3</td>
<td>Al-pekač, ekspandiran polistiren, lepilo za papir</td>
<td>Delovna halja, zaščitna podloga</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>5</td>
<td>1</td>
<td>Prenašanje mer na ohišje ploščatega SSE</td>
<td>Svinčnik, šablona za ohišje SSE</td>
<td>Lepenka</td>
<td>Delovna halja</td>
<td>4</td>
</tr>
<tr>
<td>12.</td>
<td>5</td>
<td>1</td>
<td>Izrezovanje ohišja ploščatega SSE</td>
<td>Kotnik s prislonom, nož</td>
<td>Lepenka</td>
<td>Delovna halja</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>za karton</td>
<td>zaščitna podloga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>Žlebičenje ohišja ploščatega SSE</td>
<td>Kotnik s prislonom, žlebilo</td>
<td>Lepenka</td>
<td>Delovna halja, zaščitna podloga</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>1</td>
<td>Luknjanje ohišja ploščatega SSE</td>
<td>Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Lepenka</td>
<td>Delovna halja, zaščitna podloga</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1-6</td>
<td></td>
<td>Sestavljanje, lepljenje SSE</td>
<td>Pištola za vroče lepljenje</td>
<td>Izoliran Al-pekač, lepenka, lepilni vložek za piščalo</td>
<td>Delovna halja, zaščitna podloga</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>1</td>
<td>Prenašanje mer na prozorno kritino</td>
<td>Kovinski merilni trak, permanentni flomaster</td>
<td>PVC folija</td>
<td>Delovna halja</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>1</td>
<td>Izrezovanje prozorne kritine</td>
<td>Škarje za papir</td>
<td>PVC folija</td>
<td>Delovna halja, zaščitna podloga</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>1</td>
<td>Lepljenje prozorne kritine</td>
<td>Pištola za vroče lepljenje</td>
<td>PVC folija, izoliran Al-pekač, lepilni vložek za piščalo</td>
<td>Delovna halja, zaščitna podloga</td>
<td></td>
</tr>
</tbody>
</table>
V. 14 Tehnična in tehnološka dokumentacija za solarni sistem z vakuumskim SSE

12 1 PVC cev 10x14 L=550
11 1 PVC cev 10x14 L=460
10 1 Hranilnik toplote - izoliran
9 1 PVC cev 10x14 L=400
8 1 Distančnik 45x35 H=15
7 2 Bakrena cev 8 x 10 L=250
6 1 PVC cev 10x14 L=75
5 2 PVC cev 10x14 L=15
4 1 Pokrov notranje cevi Pokrov steklenice T.O.43
3 1 Notranja cev Steklenica V=1L
2 1 Pokrov zunanjega cevi Pokrov kozarca D=100
1 1 Zunanja cev Steklen kozarec V=4L

Poz. Kos Naziv Dimenzije/gradivo/opomba
15.04.2016 Darinka Petlinč

M 1:4 Solarni sistem z vakuumskim SSE
15.4.2016
Darinka Petrina

M 1:1
Pokrov zunanje cevi - poz. 2
15.4.2016 Darinka Petrina

M 1:1 Pokrov notranje cevi - poz. 4
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Poz.</th>
<th>Kos</th>
<th>Delovna operacija</th>
<th>Orodja, stroji, naprave in pripomočki</th>
<th>Gradivo</th>
<th>Varstvo pri delu</th>
<th>Predviden čas (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7</td>
<td>1</td>
<td>Prenašanje mer na bakreno cev</td>
<td>Kovinski merilni trak, zarisovalna igla</td>
<td>Mehka bakrena cev</td>
<td>Delovna halja</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>7</td>
<td>1</td>
<td>Žaganje bakrene cevi</td>
<td>Žaga za kovino, lokasta, vzporedni primež</td>
<td>Mehka bakrena cev</td>
<td>Delovna halja</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>6</td>
<td>1</td>
<td>Prenašanje mer na PVC cev</td>
<td>Kovinski merilni trak, permanentni flomaster</td>
<td>PVC cev</td>
<td>Delovna halja</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>6</td>
<td>1</td>
<td>Rezanje PVC cevi</td>
<td>Nož za karton</td>
<td>Mehka bakrena cev, PVC cev</td>
<td>Delovna halja, zaščitna podloga</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>6, 7</td>
<td>1</td>
<td>Spajanje U-cevi</td>
<td>(sušilec za lase)</td>
<td>Mehka bakrena cev, PVC cev</td>
<td>Delovna halja</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>1</td>
<td>Barvanje notranje cevi</td>
<td></td>
<td>Črna barva v spreju, notranja steklena cev, (V=1 \text{ L})</td>
<td>Delovna halja, zaščitna podloga</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>1</td>
<td>Prenašanje mer na pokrov notranje cevi</td>
<td>Kovinski merilni trak, zarisovalna igla/permanentni flomaster</td>
<td>Pokrov notranje steklene cevi</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>1</td>
<td>Točkanje</td>
<td>Točkalo, kovaško kladivo, leseni nastavek (dim. 30 x 30 x 80 mm), vzporedni primež</td>
<td>Pokrov notranje steklene cevi</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>1</td>
<td>Vrtanje</td>
<td>Vrtalni stroj s stojalom, sveder, premer 10 mm, strojni primež, leseni nastavek (dim. 30 x 30 x 80 mm)</td>
<td>Pokrov notranje steklene cevi</td>
<td>Delovna halja, zaščitna očala, pokrivalo</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>2</td>
<td>1</td>
<td>Prenašanje mer na pokrov zunanj cevi</td>
<td>Kovinski merilni trak, zarisovalna igla/permanentni flomaster</td>
<td>Pokrov zunanj steklene cev, (V=4 \text{ L})</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>2</td>
<td>1</td>
<td>Točkanje</td>
<td>Točkalo, kovaško kladivo</td>
<td>Pokrov zunanj steklene cevi</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>2</td>
<td>1</td>
<td>Vrtanje</td>
<td>Vrtalni stroj s stojalom, vijačni sveder, premer</td>
<td>Pokrov zunanj steklene cevi</td>
<td>Delovna halja, zaščitna</td>
<td>7</td>
</tr>
</tbody>
</table>
10 mm, spiralni sveder, premer 40 mm, strojni primež

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>3, 8</td>
<td>Lepljenje distančnika</td>
<td>Distančnik iz ekspandiranega polistirena, dim. 45x35x15 mm, polimerizacijsko lepilo, notranja steklena cev</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>2, 9</td>
<td>Vstavljanje, tesnjenje</td>
<td>Pištola za vroče lepljenje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leplni vložek za piščalo, PVC cev, pokrov zunanj steklene cevi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja, zaščitna podloga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>2, 3</td>
<td>Tesnjenje</td>
<td>Pištola za vroče lepljenje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leplni vložek za piščalo, steklenica za sok, pokrov za steklen kozarec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>1-8</td>
<td>Sestavljanje, tesnjenje</td>
<td>U-cev, notranja steklena cev, pokrov notranje steklene cevi, zunanj steklena cev, PVC cev</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>9</td>
<td>Izsesavanje zraka</td>
<td>Ročna tlačilka za blazine (s funkcijo polnjenje/praznjenje zraka)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vakuumski SSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>9</td>
<td>Tesnjenje</td>
<td>PVC sponka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vakuumski SSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delovna halja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
V. 15 Tehnična in tehnološka dokumentacija za HT

<table>
<thead>
<tr>
<th>Poz.</th>
<th>Kós</th>
<th>Naziv</th>
<th>Dimenzije/gradivo/opomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>Izolacijski pokrov HT</td>
<td>lepenka - 4mm</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Obišče HT</td>
<td>lepenka - 4mm</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Izolacija hranilnika toplote</td>
<td>poliuretanska pena</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Hranilnik toplote</td>
<td>Pločevinka V=1L</td>
</tr>
</tbody>
</table>

15.04.2016 Darinka Petrna

M 2:3 Hranilnik toplote izoliran - poz. 10
15.4.2016 Darinka Petrina

M 2:3 Hranilnik toplote (HT) - poz.1
Razvit plašć izolacije:

<table>
<thead>
<tr>
<th>15.4.2018</th>
<th>Darinka Petrina</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 1:2</td>
<td>Izolacija HT t=4 - poz. 2</td>
</tr>
</tbody>
</table>
15.4.2016 Darinka Petrina

M 1:1 Izolacijski pokrov HT - poz. 4

LV
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Poz.</th>
<th>Kos</th>
<th>Delovna operacija</th>
<th>Orodja, stroji, naprave in pripomočki</th>
<th>Gradivo</th>
<th>Varstvo pri delu</th>
<th>Predviden čas (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>1</td>
<td>Prenašanje mer na HT</td>
<td>Zarisovalna igla, kovinski merilni trak,</td>
<td>Pločevinka</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>1</td>
<td>Točkanje</td>
<td>Točkalo, kovaško kladivo, vzporedni primer, železna cev, premer 90 mm</td>
<td>Pločevinka</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>1</td>
<td>Vrtanje</td>
<td>Strojni primež, vrtalni stroj s stojalom, vijačni sveder, premer 10 mm</td>
<td>Pločevinka</td>
<td>Delovna halja, zaščitna očala, pokrivalo</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
<td>Piljenje ostrih robov</td>
<td>Okrogla piščanka</td>
<td>Pločevinka</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>5, 6</td>
<td></td>
<td>Prenašanje mer na PVC cev</td>
<td>Kovinski merilni trak, permanentni flomaster</td>
<td>PVC cev</td>
<td>Delovna halja</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>5, 6</td>
<td></td>
<td>Rezanje PVC cevi</td>
<td>Nož za karton</td>
<td>PVC cev</td>
<td>Delovna halja, zaščitna podloga</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>1, 5, 6</td>
<td></td>
<td>Sestavljanje, tesnenje</td>
<td>Pištola za vroče lepljenje</td>
<td>Pločevinka, PVC cev, lepilni vložek za piščalo</td>
<td>Delovna halja</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>2, 8</td>
<td></td>
<td>Prenašanje mer na izolacijo HT</td>
<td>Permanentni flomaster, kovinski merilni trak, kotnik s prislonom, šestilo</td>
<td>Poliuretanska pena</td>
<td>Delovna halja</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>2, 8</td>
<td></td>
<td>Izrezovanje izolacije HT</td>
<td>Nož za karton, kotnik s prislonom</td>
<td>Poliuretanska pena</td>
<td>Delovna halja, zaščitna podloga</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>2</td>
<td>1</td>
<td>Luknjanje</td>
<td>Luknjač s premerom 10 mm, kladivo iz umetne snovi</td>
<td>Poliuretanska pena</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>1, 2</td>
<td></td>
<td>Lepljenje izolacije HT</td>
<td>Pištola za vroče lepljenje</td>
<td>Pločevinka, poliuretanska pena, lepilni vložek za piščalo</td>
<td>Delovna halja, zaščitna podloga</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>3</td>
<td>1</td>
<td>Prenašanje mer na ohišje HT</td>
<td>Svinčnik, šablona za ohišje HT</td>
<td>Lepenka</td>
<td>Delovna halja</td>
<td>4</td>
</tr>
<tr>
<td>13.</td>
<td>3</td>
<td>1</td>
<td>Izrezovanje ohišja HT</td>
<td>Nož za karton, kotnik s prislonom</td>
<td>Lepenka</td>
<td>Delovna halja, zaščitna</td>
<td>5</td>
</tr>
<tr>
<td>14.</td>
<td>3</td>
<td>1</td>
<td>Žlebičenje ohišja HT</td>
<td>Zlebilo, kotnik s prislonom</td>
<td>Lepenka</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>15.</td>
<td>3</td>
<td>1</td>
<td>Luknjanje ohišja HT</td>
<td>Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Lepenka</td>
<td>Delovna halja, zaščitna podloga</td>
<td>2</td>
</tr>
<tr>
<td>16.</td>
<td>3</td>
<td>1</td>
<td>Prenos mer na izolacijski pokrov HT</td>
<td>Svinčnik, ravnilo</td>
<td>Lepenka</td>
<td>Delovna halja</td>
<td>2</td>
</tr>
<tr>
<td>17.</td>
<td>3, 8</td>
<td>1</td>
<td>Lepljenje izolacijskega pokrova</td>
<td>Polimerizacijsko lepilo</td>
<td>Lepenka, poliuretanska pena</td>
<td>Delovna halja, zaščitna podloga</td>
<td>1</td>
</tr>
<tr>
<td>18.</td>
<td>3, 8</td>
<td>1</td>
<td>Luknjanje izolacijskega pokrova HT</td>
<td>Luknjač, premer 10 mm, kladivo iz umetne snovi</td>
<td>Lepenka, poliuretanska pena</td>
<td>Delovna halja, zaščitna podloga</td>
<td>1</td>
</tr>
<tr>
<td>19.</td>
<td>1-8</td>
<td></td>
<td>Sestavljanje, lepljenje HT</td>
<td>Pištola za vroče lepljenje</td>
<td>Lepenka, izoliran HT, leplilni vložek za pištolo</td>
<td>Delovna halja, zaščitna podloga</td>
<td>5</td>
</tr>
</tbody>
</table>
UČNI LIST 1 – IZDELOVANJE PLOŠČATEGA SSE

1. NAČRTOVANJE
 a) Iz spodaj navedenih materialov ste izdelali model ploščatega SSE. Opišite namen uporabe oz. funkcijo posameznih materialov.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NAMEN UPORABE/FUNKCIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC cev</td>
<td></td>
</tr>
<tr>
<td>mehka bakrena cev</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>izolacija</td>
<td></td>
</tr>
<tr>
<td>aluminijasta folija</td>
<td></td>
</tr>
<tr>
<td>lepenka</td>
<td></td>
</tr>
<tr>
<td>prozorna folija za živila</td>
<td></td>
</tr>
</tbody>
</table>

 b) Na shemi ploščatega SSE poimenujte sestavne elemente (absorber s cevjo, prozorna »kritina«, toplotna izolacija, ohišje).

2. IZDELAVA MODELA (glej Operacijski list – Izdelava ploščatega SSE)
UČNI LIST 1 – IZDELOVANJE PLOŠČATEGA SSE

1. NAČRTOVANJE
 a) Iz spodaj navedenih materialov ste izdelali model ploščatega SSE. Opišite namen uporabe oz. funkcijo posameznih materialov.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NAMEN UPORABE/FUNKCIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC cev</td>
<td>Povezuje SSE in HT. Po njej kroži voda od SSE do HT in obratno.</td>
</tr>
<tr>
<td>mehka bakrena cev</td>
<td>Sprejema toploto z absorberja in jo prenaša na vodo, ki kroži po cevi.</td>
</tr>
<tr>
<td>HT</td>
<td>V njem se skladišči topla voda.</td>
</tr>
<tr>
<td>izolacija</td>
<td>Zmanjšuje toplotne izgube v okolico.</td>
</tr>
<tr>
<td>aluminijasta folija</td>
<td>Ima funkcijo absorberja. Zbira sončno energijo in jo pretvarja v toploto.</td>
</tr>
<tr>
<td>lepenka</td>
<td>Ima funkcijo ohišja. Nosi elemente SSE, jih ščiti pred zunanjimi vplivi ter omogoča namestitev SSE.</td>
</tr>
<tr>
<td>prozorna folija za živila</td>
<td>Zmanjšuje toplotne izgube SSE v okolico ter ščiti absorberja pred zunanjimi vplivi.</td>
</tr>
</tbody>
</table>

 b) Na shemi ploščatega SSE poimenujte sestavne elemente (absorber s cevjo, prozorna »kritina«, toplotna izolacija, ohišje).
UČNI LIST 1 – IZDELOVANJE VAKUUMSKEGA SSE

1. NAČRTOVANJE
 a) Iz spodaj navedenih materialov ste izdelali model vakuumskega SSE. Opisite namen uporabe oz. funkcijo posameznih materialov.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NAMEN UPORABE/FUNKCIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC cev</td>
<td></td>
</tr>
<tr>
<td>mehka bakrena cev</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>počrnjena steklenica</td>
<td></td>
</tr>
<tr>
<td>vakuuum</td>
<td></td>
</tr>
<tr>
<td>dvojna steklena cev</td>
<td></td>
</tr>
</tbody>
</table>

 b) Na shemi vakuumskega SSE poimenujte sestavne elemente (steklena cev, U-cev, absorber, toplotna izolacija).

2. IZDELAVA MODELA (glej Operacijski list – Izdelava vakuumskega SSE)
UČNI LIST 1 – IZDELOVANJE VAKUUMSKEGA SSE

1. NAČRTOVANJE

a) Iz spodaj navedenih materialov ste izdelali model vakuumskega SSE. Opisite namen uporabe oz. funkcijo posameznih materialov.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>NAMEN UPORABE/FUNKCIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC cev</td>
<td>Povezuje SSE in HT. Po njej kroži voda od SSE do HT in obratno.</td>
</tr>
<tr>
<td>mehka bakrena cev</td>
<td>Sprejema toploto z absorberja in jo prenaša na vodo, ki kroži po cevi.</td>
</tr>
<tr>
<td>HT</td>
<td>V njem se skladišči topla voda.</td>
</tr>
<tr>
<td>počrnjena steklenica</td>
<td>Služi kot absorber, ki sprejema sončno energijo in jo pretvarja v toploto.</td>
</tr>
<tr>
<td>vakuum</td>
<td>Zmanjšuje toplotne izgube v okolico.</td>
</tr>
<tr>
<td>dvojna steklena cev</td>
<td>Ima funkcijo prozorne kritine, ki zmanjšuje toplotne izgube v okolico.</td>
</tr>
</tbody>
</table>

b) Na shemi vakuumskega SSE poimenujte sestavne elemente (steklena cev, U-cev, absorber, toplotna izolacija).

V. 20: Potek dela

Preden učenci pričnejo s preizkušanjem solarnih sistemov, dobijo učenci Učni list 2, na katerem so napisana problemska vprašanja (priloga V. 21). Nato se razdelijo v skupine po 4 učenci, tako kot so bili, ko so izdelovali model solarnega sistema s ploščatim oz. vakuumskim SSE ter enega izmed njih določijo za vodjo. Problemska vprašanja rešijo najprej teoretično, nato pa praktično s pomočjo modela, ki so ga izdelali, štoparice ter merilnika temperature. Na voljo imajo približno 10 minut časa, da razmislijo o možnih rešitvah ali idejah za razrešitev problemskih vprašanj, ki si jih zapišejo na list. Sledi predstavitev idej vodje skupin učitelju in sošolcem, ki te ideje komentirajo in ocenjujejo. Nato učitelj razdeli Učni list 3 (priloga V. 13, V. 15), na katerih so vprašanja za pomoč pri reševanju problema. Nato skupaj z učenci odidejo na šolsko igrišče. Pred začetkom testiranja SSE učitelj učence opomni na pravilno postavitev sprejemnikov oz. na kaj morajo biti pri tem pozorni. Učitelj hodi od skupine do skupine, preverja in usmerja učence. Na koncu oblikujejo tri večje skupine, v katerih so učenci iz vsake manjše skupine. Med sabo se pogovorijo, dopolnijo/popravijo odgovore in določijo vodjo, ki bo predstavil rešitve nalog. Učitelj...
in ostali sošolci med predstavitvijo poslušajo. Na koncu učitelj dopolni oz. popravi njihove odgovore, če so na kaj pozabili ali česa niso prav razumeli.

V. 21 Učni list 2 - Problemska vprašanja

Za učence, ki testirajo solarni sistem s ploščatim SSE

UČNI LIST 2 – PROBLEMSKA VPRAŠANJA

Predno gre babica do ponudnika, jo zanima, kaj kupuje večina ljudi. Ko se je peljala skozi naselje, je opazila, da imajo na strehah večinoma ploščate SSE. Babici boste predstavili vaš model in ji tako svetovali pri izbiri. Še prej pa morate spoznati delovanje vašega solarnega sistema.

PV1. Kako boste ugotovili ali sistem s ploščatim SSE sploh deluje?

PV2. Babico zanimata delovanje in montaža solarnega sistema. In sicer:
 a) Pojasni način delovanja vašega solarnega sistema.
 b) Kje se v HT nahaja topla voda?
 c) Ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim absorberjem)?
 d) Kako mora biti pozicioniran HT glede na SSE?
 e) Kam in kako naj namesti SSE?

PV4. Preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?

Za učence, ki testirajo solarni sistem s vakuumskim SSE

UČNI LIST 2 – PROBLEMSKA VPRAŠANJA

PV1. Kako boste ugotovili ali sistem z vakuumskim SSE sploh deluje?

PV2. Babico zanimata delovanje in montaža solarnega sistema. In sicer:
 a) Pojasni način delovanja vašega solarnega sistema.
 b) Kje se v HT nahaja topla voda?
 c) Ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim absorberjem)?
 d) Kako mora biti pozicioniran HT glede na SSE?
 e) Kam in kako naj namesti SSE?

PV3. Po predstavitvi delovanja vašega solarnega sistema je babica na poti domov na strehah opazila večinoma ploščate SSE, ki so cenejši. Sedaj ne ve, za kateri tip SSE naj se odloči. Pomagajte ji pri odločitvi.

PV4. Preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?

V. 22 Predstavitev idej za razrešitev problemov

Učenci naj v nekaj stavkih predstavijo ideje, ki se jim zdijo najbolj primerne. Predstaviti morajo, kako so si posamezno rešitve zamišlili, kako bi jo izpeljali, na kaj so bili pri izbiranju idej pozorni ter na kaj so se osredotočili.
V. 23 Učni list 3 - Preizkušanje ploščatega SSE

Ime in priimek učenca: ________________________ Razred: _____ Datum: ___________
Ostali člani skupine: __

UČNI LIST 3 – PREIZKUŠANJE PLOŠČATEGA SSE

Predno gre babica do ponudnika, jo zanima, kaj kupuje večina ljudi. Ko se je peljala skozi naselje, je opazila, da imajo na strehah večinoma ploščate SSE. Babici boste predstavili vaš model in ji tako svetovali pri izbiri. Še prej pa morate spoznati delovanje vašega solarnega sistema.

1. Kako boste ugotovili, če vaš sistem s ploščatom SSE sploh deluje?
 a) S pomočjo modela solarnega sistema s ploščatom SSE izpolni spodnjo tabelo.

Čas [min]	Začetek	20	30	40	50	60
 Temperatura vode v HT [°C] | | | | | |
 Opombe (zunanja temperatura, vreme) | | | | | |

 b) Glede na zgornje podatke nariši graf temperature vode v HT v odvisnosti od časa:

 ![Graf temperature vode v HT](grafica)

2. Babico zanimata delovanje in montaža solarnega sistema. In sicer:
 a) Pojasni način delovanja vašega solarnega sistema.

 __
 __
 __

 b) Kje v HT se nahaja topla potrošna voda? Zakaj?

 __
 __

LXIV
c) ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim absorberjem)? zakaj?

__

__

d) ** kako mora biti pozicioniran HT glede na SSE? Ustrezeno obkroži in odgovor utemelji.

[diagram]

a) SSE b) SSE

__

__

e) ** kam in kako naj namesti SSE? Na streho hiše, ki je usmerjena na vzhod, ali na streho garaže, ki je usmerjena na jug? Naj jih namesti direktno na streho ali naj uporabi nosilce za spremembo naklona? Odgovor utemelji.

__

__

a) poveži se s skupino, ki je izdelovala solarni sistem z vakuumskim SSE ter primerjaj naraščanje temperature obeh SSE.

[chart]

LEGENDA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | Ploščati SSE
| | Vakuumski SSE

b) razloži, zakaj je prišlo do razlike v naraščanju temperature med ploščatim in vakuumskim SSE.

__

__

4. preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?
V. 24 Učni list 3 – Preizkušanje ploščatega SSE – rešitve

UČNI LIST 3 – PREIZKUŠANJE PLOŠČATEGA SSE

Predno gre babica do ponudnika jo zanima, kaj kupuje večina ljudi. Ko se je peljala skozi naselje, je opazila, da imajo na strehah večinoma ploščate SSE. Babici boste predstavili vaš model in ji tako svetovali pri izbiri. Še prej pa morate spoznati delovanje vašega solarnega sistema.

1. **Kako boste ugotovili, če vaš sistem s ploščatim SSE sploh deluje?**

a) S pomočjo modela solarnega sistema s ploščatim SSE izpolni spodnjo tabelo.

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Začetek</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura vode v HT[°C]</td>
<td>Rezultati se razlikujejo glede na letni čas in vremenske razmere. Pomembno je, da temperatura narašča.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opombe (zunanja temperatura, vreme)</td>
<td>Odvisno od letnega časa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Glede na zgornje podatke nariši graf temperature vode v HT v odvisnosti od časa:

![Graf temperature vode v HT v odvisnosti od časa](image)

2. **Babico zanimata delovanje in montaža solarnega sistema. In sicer:**

a) Pojasni način delovanja vašega solarnega sistema.

Absorber sprejema sončno energijo in jo pretvarja v toploto. Z absorberja se toplota prenese na bakreno cev in s tem na vodo, ki teče po cevi. Segreta voda postane lažja in se dviga v HT, kjer preda toploto in se ohlajena vrne nazaj v SSE.

b) Kje v HT se nahaja topla voda? Zakaj?

Topla voda je lažja, zato se nahaja v zgornji polovici HT.

c) Ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim absorberjem)? Zakaj?

Počasneje. Manjša kot je absorberska površina, manj sončne energije sprejme in tako počasneje segreje vodo.
d) **Kako mora biti pozicioniran HT glede na SSE? Odgovor utemelji.**

HT mora ležati višje kot SSE, zato da v SSE priteka hladna voda iz HT, v HT pa segreta voda iz SSE.

e) **Kam in kako naj namesti SSE? Na streho hiše, ki je usmerjena na vzhod, ali na streho garaže, ki je usmerjena na jug? Naj jih namesti direktno na streho ali naj uporabi nosilce za spremembo naklona? Odgovor utemelji.**

SSE naj namesti na streho garaže, ki je usmerjena na jug. Če je streha ravna, naj uporabi nosilce, da dobi naklon, sicer pa direktno na streho.

a) Poveži se s skupino, ki je izdelovala solarni sistem z vakuumskim SSE ter primerjaj naraščanje temperature obeh SSE.

![Diagram SSE](image)

LEGENDA

- Ploščati SSE
- Vakuumski SSE

Rezultati se razlikujejo glede na letni čas in vremenske razmere. Pomembno je, da pri solarnem sistemu z vakuumskim SSE temperatura hitreje narašča kot pri solarnem sistemu s ploščatim SSE.

b) Razloži, zakaj je prišlo do razlike v naraščanju temperature med ploščatim in vakuumskim SSE.

Do razlike je prišlo zaradi različne toplotne izolacije. Vakuum je bistveno boljši toplotni izolator kot ekspandiran polistiren.

4. **Preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?**

Rešitve se razlikujejo glede na skupino. (Npr. ustvariti večji vakuum, manjše steklente cevi, manjši vmesni prostor med steklenimi cevami, izolirati dovodno in odvodno cev...).
V. 25 Učni list 3 - Preizkušanje vakuumskega SSE

Ime in priimek učenca: ________________________
Razred: ___
Datum: ___________
Ostali člani skupine: _______________________________

UČNI LIST 3 – PREIZKUŠANJE VAKUUMSKEGA SSE

1. **Kako boste ugotovili, če vaš sistem z vakuumskim SSE sploh deluje?**
 a) S pomočjo modela solarnega sistema z vakuumskim SSE izpolni spodnjo tabelo.

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Začetek</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura vode v HT [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opombe (zunanja temperatura, vreme)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Glede na zgornje podatke nariši graf temperature vode v HT v odvisnosti od časa:

![Graf temperature vode v HT](graf.png)

2. **Babico zanimata delovanje in montaža solarnega sistema. In sicer:**
 a) Pojasni način delovanja vašega solarnega sistema.
 __
 __
 __
 __

 b) Kje v HT se nahaja topla potrošna voda? Zakaj?
 __
 __
 __

 c) Ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim

LXVIII
absorberjem)? Zakaj?

d) ** Kako mora biti pozicioniran HT glede na SSE? Odgovor utemelji.

![Diagram](image)

e) ** Kam in kako naj namesti SSE? Na streho hiše, ki je usmerjena na vzhod ali na streho garaže, ki je usmerjena na jug? Naj jih namesti direktno na streho ali naj uporabi nosilce za spremembo naklona? Odgovor utemelji.

3. Po predstavitvi delovanja vašega solarnega sistema je babica na poti domov na strehah opazila večinoma ploščate SSE, ki so cenejši. Sedaj ne ve, kateri tip SSE naj se odloči. Pomagajte ji pri odločitvi.

a) Povežite se s skupino, ki je izdelovala solarni sistem s ploščatim SSE ter primerjaj naraščanje temperature obeh SSE.

![Line graph](image)

b) Razloži, zakaj je prišlo do razlike v naraščanju temperature med ploščatim in vakuumskim SSE.

4. Preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?

LEGENDA

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
UČNI LIST 3 – PREIZKUŠANJE VAKUUMSKEGA SSE

1. Kako boste ugotovili, če vaš sistem z vakuumskim SSE sploh deluje?
 a) S pomočjo modela solarnega sistema z vakuumskim SSE izpolni spodnjo tabelo.

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Začetek</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura vode v HT [°C]</td>
<td>Rezultati se razlikujejo glede na letni čas in vremenske razmere. Pomembno je, da temperatura narašča.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opombe (zunanja temperatura, vreme)</td>
<td>Odvisno od letnega časa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b) Glede na zgornje podatke nariši graf temperature vode v HT v odvisnosti od časa:

![Graf temperatura vode v HT](image)

2. Babico zanimata delovanje in montaža solarnega sistema. In sicer:
 a) Pojasni način delovanja vašega solarnega sistema.

 Absorber (počrnjena zunanja stran notranje steklene cevi) sprejema sončno energijo in jo pretvarja v toploto. Z absorberja se toplota prenese na bakreno U-cev in s tem na vodo, ki teče po cevi. Segreta voda postane lažja in se dviga v HT, kjer preda toploto in se ohlajena vrne nazaj v SSE.

 b) Kje v HT se nahaja topla voda? Zakaj?

 Topla voda je lažja, zato se nahaja v zgornji polovici HT.

 c) Ali bi temperatura vode naraščala enako hitro, če bi kupila manjše SSE (tj. z manjšim absorberjem)? Zakaj?

 Počasneje. Manjša kot je absorberska površina, manj sončne energije sprejme in tako počasneje segreje vodo.
d) **Kako mora biti pozicioniran HT glede na SSE? Odgovor utemelji.**

HT mora ležati višje kot SSE, zato da v SSE priteka hladna voda iz HT, v HT pa segreta voda iz SSE.

c) **Kam in kako naj namesti SSE? Na streho hiše, ki je usmerjena na vzhod ali na streho garaže, ki je usmerjena na jug? Naj jih namesti direktno na streho ali naj uporabi nosilce za spremembo naklona? Odgovor utemelji.**

SSE naj namesti na streho garaže, ki je usmerjena na jug. Če je streha ravna, naj uporabi nosilce, da dobi naklon, sicer pa direktno na streho.

3. **Po predstavitvi delovanja vašega solarnega sistema je babica na poti domov na strehah opazila večinoma ploščate SSE, ki so cenejši. Sedaj ne ve, za kateri tip SSE naj se odloči. Pomagajte ji pri odločitvi.**

a) Povežite se s skupino, ki je izdelovala solarni sistem s ploščatim SSE ter primerjaj naraščanje temperature obeh SSE.

Rezultati se razlikujejo glede na letni čas in vremenske razmere. Pomembno je, da pri solarnem sistemu z vakuumskim SSE temperatura hitreje narašča kot pri solarnem sistemu s ploščatim SSE.

b) Razloži, zakaj je prišlo do razlike v naraščanju temperature med ploščatim in vakuumskim SSE.

Do razlike je prišlo zaradi različne toplotne izolacije. Vakuum je bistveno boljši toplotni izolator kot ekspandiran polistiren.

4. **Preizkusili ste svoj model SSE. Kako bi ga lahko izboljšali?**

Rešitve se razlikujejo glede na skupino. (Npr. ustvariti večji vakuum, manjše steklene cevi, manjši vmesni prostor med steklenimi cevmi, izolirati dovodno in odvodno cev…).

VI. EVALVACIJA IZVEDBE DIDAKTIČNE ENOTE