SEBASTJAN ŠKRJANC

Mentor: dr. SLAVKO KOCIJANČIČ, izr. prof.
Somentor: DAVID RIHTARŠIČ, asist.

VKLJUČEVANJE AKTUALNIH VSEBIN O MOTORJIH Z NOTRANJIM IZGOREVANJEM K POUKU TEHNIKE IN TEHNOLOGIJE

DIPLOMSKO DELO

LJUBLJANA, 2013
Zahvala

Rad bi se zahvalil mentorju, dr. Slavku Kocijančiču, izr. prof., ki me je pri pisanju diplomskega dela usmerjal z nasveti.

Zahvaljujem se tudi svoji družini in ostalim prijateljem, ki so mi stali ob strani ter me podpirali pri študiju.

Zahvaljujem se tudi asistentu Davidu Rihtaršiču, ki me je prav tako usmerjal z nasveti ter predlogi pri pisanju diplomskega dela.
POVZETEK

V diplomskem delu bomo na kratko predstavili motorje z notranjim izgorevanjem. Razdelili jih bomo na skupine po številu taktov, po položaju batov, po načinu hlajenja, itd. Predstavili bomo tudi napredne tehnologije, s katerimi so tekom razvoja motorjev zmanjševali njihovo porabo.

Vse skupaj bomo povezali z osnovno šolo, saj se učenci osnovne šole z motorji srečajo v osmom razredu. Preverili bomo, kako dobro je ta tematika zajeta v osnovnošolskih učbenikih, in v nacionalnih preverjanjih znanja.

KLJUČNE BESEDE:

Takt, sesanje, kompresija, delo, izpuh, skupni vod, dodatki h gorivu, turbo polnilnik, osnovnošolski učbeniki, nacionalno preverjanje znanja.
Introducing topics about combustion engine in technology education

SUMMARY

In the thesis we will briefly present internal combustion engines. We divided them into groups according to the number of cycles, according to the position of pistons, after cooling mode, etc..

We will also present advanced technology with which they are during the development of engines reduce their consumption.

Everything will be linked to the primary school. Normally, pupils, the engines meet in eighth grade. We will check how well these topics covered in elementary textbooks, and national assessments.

KEY WORDS:

Stroke, intake, compression, work, exhaust, common rail, fuel additives, turbo charger, elementary textbooks, national testing.
KAZALO

1 UVOD .. 4
 1.1 NAMEN, CILJI IN HIPOTEZE NALOGE ... 4
 1.2 PREVIDENE METODE RAZISKOVANJA ... 4
 1.3 PREGLED VSEBINE OSTALIH POGlavij ... 5

2 MOTORJI Z NOTRANJIM IZGORDEVANJEM ... 5
 2.1 RAZVOJ MOTORJEV ... 5
 2.2 SPLOŠNO O MOTORJIH .. 6

3 DELITEV MOTORJEV ... 7
 3.1 DELITEV PO ŠTEVILU TAKTOV ... 7
 3.2 DELITEV PO GIBANJU BATA .. 13
 3.3 DELITEV PO RAZPOREDITVI VALJEV .. 14
 3.4 DELITEV PO NAČINU VŽIGA .. 15
 3.5 DELITEV PO VRSTI HLAJENJA .. 16

4 PORABA MOTORJEV ... 16
 4.1 SKUPNI VOD GORIVA .. 17
 4.2 PLINSKI MOTORJI .. 18
 4.3 DODATKI H GORIVU ... 19
 4.4 TURBO POLNILNIK ... 20
 4.5 ALTERNATIVNA GORIVA .. 21

5 VKLJUČEVANJE MOTORJEV K POUKU TEHNIKE IN TEHNOLOGIJE ... 22
 5.1 UČBENIK TEHNIKA IN TEHNOLOGIJA 8 .. 22
 5.2 UČBENIK TEHNIKA 8 ... 22
 5.3 UČBENIK TEHNIKA IN TEHNOLOGIJA 8 .. 23

6 NACIONALNO PREVERJANJE ZNANJA .. 23
 6.1 PREGLED NALOG .. 23
 6.2 REZULTATI NALOG ... 27
 6.3 VZROKI ZA USPEŠNOST/NEUSPEŠNOST ... 28

8 DISKUSIJA ... 29

9 ZAKLJUČEK .. 29

10 LITERATURA IN VIRI .. 30
1 UVOD

Dandanes je cena naftnih derivatov zelo visoka v primerjavi izpred dveh let. Zato se proizvajalci avtomobilov trudijo kar se da zmanjšati porabo motorjev z notranjim izgorevanjem. V diplomskem delu bomo raziskali, kako so to storili in s kakšno tehnologijo.

Poleg tega je tema o motorjih zajeta tudi v osnovnošolskem učnem načrtu pri predmetu tehnike – učenci morajo proučiti motor z notranjim zgorevanjem [1].

Preverili bomo tudi, kako podrobnno in natančno je ta tema obravnavana v osnovnošolskih učbenikih za osmi razred. Naslednje leto, v devetem razredu, se učenci srečajo z nacionalnim preverjanjem znanja. Tudi tukaj bomo izpostavili naloge na to tematiko in preverili njihovo težavnost. Vse skupaj bomo povezali in poskusili priti do sklepa, kakšen je vzrok za slabe ali dobre rezultate.

1.1 NAMEN, CILJI IN HIPOTEZE NALOGE

Vse te probleme bomo poskusili rešiti z raziskovanjem. Ugotovili bomo, da je gradivo v osnovnošolskih učbenikih zastarelo in premalo natančno ter nepregledno. Kar posledično vpliva na (ne)znanje učencev, kar je razvidno iz rezultatov nacionalnega preverjanja znanja.

Izhodišče za diplomsko delo bo trditev, da so za slabo znanje učencev krivi zastareli in nepregledni učbeniki, kar se posledično pokaže tudi pri rezultatih nacionalnih preverjanj znanja.

1.2 PREDVIDENE METODE RAZISKOVANJA

Diplomsko delo bo temeljilo na statistični metodi. Pregledali in analizirali bomo rezultate nalog nacionalnega preverjanja znanja, ki preverjajo znanje o motorjih z notranjim izgorevanjem. Na podlagi rezultatov bomo sklepali, kakšen je vzrok za takšno
znanje učencev. Pregledali bomo tudi obravnavane teme v osnovni šoli in poskusili poiskati povezavo med motivacijo in znanjem učencev.

1.3 PREGLED VSEBINE OSTALIH POGlavij

- V diplomskem delu obravnavamo motorje z notranjim izgorevanjem, zato je v drugem poglavju predstavljen razvoj motorjev in njegove splošne lastnosti.
- V tretjem poglavju razdelimo motorje v pet podskupin. Ločimo jih po številu takтов, gibanju bata, razporeditvi valjev, načinu vžiga in vrsti hlajenja.
- V četrtem poglavju se osredotočimo na porabo motorjev. Skozi leta uporabe motorjev so bistveno spremenili in zmanjšali porabo goriva. Izpostavili smo nekaj osnovnih in nekaj novejših tehnologij, s katerimi so izpopolnili delovanje motorjev.
- V petem poglavju se osredotočimo na osnovnošolsko raven. Pregledali smo osnovnošolske učbenike za osmi razred in preverili njihovo vsebino o motorjih.
- V šestem poglavju smo se osredotočili na nacionalno preverjanje znanja. Izpostavili smo vse naloge na temo motorjev in jih analizirali. Preverili smo njihovo taksonomsko stopnjo zahtevnosti ter analizirali rezultate le- teh.

2 MOTORJI Z NOTRANJIM IZGOREVANJEM

Motorji so stroji, ki energijo goriva pretvorijo v gibanje. Poznamo motorje z notranjim in z zunanjim izgorevanjem. Osredotočili se bomo samo na motorje z notranjim izgorevanjem (MNZ).

2.1 RAZVOJ MOTORJEV

Vzrok za razvoj MNZ je bila človeška potreba po prenašanju težkih bremen, potovanju na dolge razdalje, hitrosti, itd. Sprva si je človek delo olajšal tako, da je breme preložil na živali. A tudi pri živalih se hitrost prevoza ni bistveno izboljšala in tudi količina bremena se ni bistveno povečala.
Šele razvoj parnega stroja v osemnajstem in devetnajstem stoletju je prinesel velik napredek k razvoju pogonskih vozil. Kmalu se je izkazalo, da je parni stroj manj primeren za cestna vozila kot za vozila na tiri [2].

2.2 SPLOŠNO O MOTORJIH

MNZ uvrščamo med toplotne stroje. Značilno za toplotne stroje je, da notranjo energijo pretvarjajo v mehansko energijo oziroma v mehansko delo.
Osnovna komponenta za samo obratovanje motorjev je gorivo. Večina vozil uporablja fosilna goriva. Sem spadajo naftni derivati v obliki:

- bencina,
- plinskega olja in
- tekočega naftnega plina.

Za dobro delovanje motorjev in dober izkoristek potrebujemo zelo čisto gorivo ter materiale, ki prenesejo zelo visoke temperature, saj v notranjosti valjev zgoreva zmes goriva in zraka, ki se v določenem položaju bata vžge [4].

Obratovanje motorjev poteka v več korakih oziroma imenujemo jih kar takti. Število ter zaporedje taktov je odvisno od vrste motorja oziroma goriva, ki ga motor uporablja. Najbolj pogost je štiritaltni motor, ki za delovanje potrebuje bencin ali plinsko olje.

Ker v MNZ prihaja do vžigov, se motorji zelo segrevajo. Velik del nastale toplote izgubimo skozi izpušni sistem, nekaj pa se je preko valjev preneha na dele motorja.

Kot smo že prej omenili, je glavna naloga MNZ prenašanje energije. Pri prenašanju energije nastopajo izgube oziroma pri motorjih govorimo o izkoristku. Nanj vpliva več dejavnikov, še najbolj pa obremenitev. V preteklosti je bil izkoristek motorjev približno 10 %, danes se pri sodobnih motorjih izkoristek giblje nekje okoli 40 %. Opaziti je, da se učinkovitost motorjev izboljšuje, emisije izpušnih plinov se zmanjšujejo. Znanost in
različne tehnologije so prinesle občutno zmanjšanje porabe goriva in posledično tudi zmanjšanje vpliva na okolje.
Poleg znanstvenikov in raziskovalcev je tudi Evropska unija poskrbela za zmanjševanje emisij s tako imenovanimi EURO standardi:

- EURO 3, sprejet leta 2000 je dovoljeval 0,05 g saj na km,
- EURO 4, sprejet leta 2005 je dovoljeval 0,025 g saj na km,
- EURO 5, sprejet leta 2009 je dovoljeval 0,005 g saj na km,
- EURO 6, ki velja do leta 2014, dovoljuje 0,005 g saj na km [4].

3 DELITEV MOTORJEV

Poznamo veliko motorjev, ki so si med seboj zelo razlikujejo. Razlikujejo se lahko po delovanju, po uporabi goriva, itd. Zato jih zaradi boljše preglednosti in razumevanja razvrščamo po različnih kriterijih:

- številu taktov,
- gibanju bata,
- razpored valjev,
- načinu vžiga in
- vrsti hlajenja [3].

3.1 DELITEV PO ŠTEVILU TAKTOV

Motorje po številu taktov ločimo na dvotaktne in štiritaktne. Najbolj pogosti so štiritaktni, ki jih najdemo v vseh avtomobilih, traktorjih, tovornjakih, itd.

3.1.1 Štiritaktni motor

Pri tem motorju so za izvedbo krožnega procesa potrebni štirje gibi bata, kar pomeni dva vrtilja ročične gredi. Od tod namreč štiritaktni motor oziroma štiritaktni proces.

1. Takt: bat se giblje po valju navzdol. Sesalni oziroma vstopni ventil je odkrit, izpušni ventil je zaprt. Pri dizelskih motorjih se valj napolni z zrakom, pri bencinskih motorjih z mešanico zraka in goriva. Ta takt se imenuje sesanje.
2. Takt: bat se giblje po valju navzgor. Sesalni ter izpušni ventil sta zaprta. Bat stiska zrak oziroma pri bencinskih motorjih zrak ter gorivo, zato se ta takt imenuje stiskanje oziroma kompresija.

3. Takt: v valju se vžge mešanica zraka in goriva. Pri bencinskih motorjih to naredi vžigalna svečka, pri dizelskih motorjih pa pride do samovžiga. Šoba namreč vbrizgne v valj gorivo, ki se ta zaradi visoke temperature vžge. Močno se povišata temperatura in tlak, ki z vso silo potisne bat proti spodnji legi. Oba ventila sta še vedno zaprta. Ta takt imenujemo delovni takt.

3.1.2 Dvotaktni motor

Pri dvotaktnim motorju je postopek podoben, le da je skrčen na dva takta. Da si bomo potek lažje predstavljali, bomo dogajanje razdelili nad batom in pod njim.

1. Takt:
dvotaktne motorje. Pri dizelskih dvotaktnih motorjih se valj napolni samo z zrakom.

b. Pod batom: na začetku se v podbatnem prostoru nahaja mešanica, ki jo kasneje bat med gibanjem navzdol izpoddina po pretočnem kanalu v valj. Ko se bat začne premikati navzgor, se polnjenje valja z mešanico konča, saj bat zapre pretočni kanal. Med tem v podbatnem prostoru nastane podtlak, ki vsrka in napolni karter s svežo mešanico.

Slika 3.5: 1. Takt [6].
2. Takt:

a. Nad batom: tudi tukaj je bat v zgornji mrtvi legi. Zaradi vžiga mešanice
 se tlak v valju zelo poveča, bat se potisne navzdol. Poleg tlaka se močno
 poveča tudi temperatura. Proti koncu takta bat najprej odpre izpušni
 kanal, takoj zatem pa še pretočni kanal.

b. Pod batom: kot smo že prej omenili v karterski prostor zaradi podtlaka
 doteka sveža mešanica. To traja toliko časa, dokler bat na poti navzgor
 ne zapre pretočnega kanala.

Slika 3.6: 2. Takt [6].

3.1.3 Štiritaktni Wanklov motor

Tudi pri Wanklovem motorju se celoten proces konča po štirih taktih.

1. Takt: bat oziroma rotor se vrti v smeri urinega kazalca. Prvi takt imenujemo
 sesanje, tako zmes goriva in zraka vstopita v prvo komoro.
2. Takt: pri drugem taktu se prostornina komore začne zmanjševati, tako da se zmes zraka in goriva stisne. Ta takt se imenuje kompresija oziroma stiskanje.

3.2 DELITEV PO GIBANJU BATA

Če opazujemo gibanje bata, lahko motorje razdelimo v dve podskupini. Najbolj pogosto gibanje bata je premočrtno. Iz fizikalnega pogleda to pomeni, da se bat giblje po premici.

Poznamo pa tudi Wanklov motor, pri katerem se bat giblje krožno. Takim motorjem pravimo motorji s krožnim gibanjem bata.
3.3 DELITEV PO RAZPOREDITVI VALJEV

Najbolj pogosti so vrstni motorji. Valji so razporejeni en zraven drugega. Tak način razporeditve zavzame največ prostora, a pozitivna stvar teh motorjev je, da so od ostalih načinov lažje sestavljivi.

Drug način postavitve so ležeči valji. To pomeni, da valja ležita tako kot prikazuje slika 3.14, poznamo jih tudi po imenu bokser motorji.

3.4 DELITEV PO NAČINU VŽIGA

Pri načinu vžiga je odvisno, katero gorivo motor potrebuje za delovanje. Zato ločimo dva načina vžiga.

Prvi je Ottov motor, pri katerem se gorivo in zrak zmešata še pred vstopom v valj.
Drug pa je dizelski motor, pri katerem se gorivo vbrizgne neposredno v valj.

3.4.1 Ottov motor

Pri vžigu zmesi nastane v nadbatnem prostoru nadtlak, ki potisne bat navzdol. To premočrtno gibanje se s pomočjo ojnice in ročične gredi spremeni v krožno gibanje. Vse do pogona koles nas loči samo še sklopka in menjalnik.

3.4.2 Dizelski motor

Prednosti dizelskega motorja v primerjavi z Ottovim motorjem so naslednje:
• boljši izkoristek,
• daljša življenjska doba in
• visok navor pri nižjih obratih motorja.

Pomanjkljivosti v primerjavi z Ottovim motorjem so:
• dražja izdelava motorja,
• večja teža,
• glasnejše obratovanje in
• večje emisije trdnih delcev.

3.5 DELITEV PO VRSTI HLAJENJA

Drugi način je vodno hlajenje motorjev. Ta način se uporablja pri veliki večini motorjev z večjo močjo. Sama konstrukcija izdelave je nekoliko drugačna od zračno hlajenih motorjev, saj se tukaj po kanalih pretaka tekočina. Blok in glava motorja imata dvojne stene, vmes se pretaka tekočina, ki odvaja toploto. Celoten sistem deluje tako, da se v tako imenovanem »hladilniku« tekočina ohladi, ki jo nato vodna črpalka potiska proti segretem motorju. [3, 10].

4 PORABA MOTORJEV

Smo v času, ko cena naftnih derivatov zelo hitro narašča. To pa ljudjem, ki imajo avtomobil, predstavlja velik problem. Zato so proizvodnje avtomobilov namenile veliko pozornosti izboljšavi motorjev. Tekom časa so pri motorjih z notranjim izgorevanjem izboljšali veliko stvari, ampak osredotočili se bomo samo na porabo goriva. Preučili bomo, kateri kriteriji na to vplivajo in kako ter s čim so zadevo izboljšali.
4.1 SKUPNI VOD GORIVA

4.2 PLINSKI MOTORJI

V tem razdelku bomo govorili predvsem o tem, kako so Ottove ali dizelske motorje spremenili v plinske motorje z notranjim zgorevanjem. Sama zamenjava goriva ni dovolj, zamenjati in dodati moramo dele, ki so ključni za delovanje plinskega motorja. Sam namen tega preoblikovanja je zmanjšati porabo neobnovljivih virov, zmanjšati emisije izpuha in zmanjšati porabo finančnih sredstev za gorivo. Trenutna cena 95 oktanskega bencina je 1,523 €, cena avtoplina je 0,794 € (12.9.2013).
Večina voznikov bencinskih oziroma otto motorjev se odloči za to spremembo. Pri bencinskih motorjih je potrebno zamenjati in dodati bistveno manj elementov kot pri dizelskih motorjih. Razlika je namreč tako velika, da se voznikom dizelskih motorjev preprosto ne obrestuje investicija.

Druga sprememba je vgradnja večfunkcijskega ventila. Običajno je integriran z rezervarjem in ima več nalog:

- polnjenje rezervarja z utekočinjenim naftnim plinom,
- omejevanje ponjenja z gorivom, v skladu s pravili in varnostnimi pogoji. Rezervar se ne sme napolniti z več kot 80 % celotne zmogljivosti. Ostalih 20 % zapolnjujejo hlapi, ki omogočajo tekočemu naftnemu plinu nemoteno širjenje ter povečanje prostornine, če je to potrebno, na primer pri velikem porastu temperature,
- prikazuje nivo plina v rezervarju,
- pobiranje utekočinjenega naftnega plina z dna rezervarja,
- polnjenje in izpust plina,

Naslednji del se imenuje uplinjevalec, ki se v vozilu uporablja z uplinjačem in vbrizgom goriva. Izbira in instalacija uplinjevalca je zelo pomembna za delovanje motorja, saj je odvisna od delovne prostornine motorja ter moči. Glavna naloga uplinjevalca je
izmenjava toplote in zmanjševanje pritiska do vrednosti, ki je najbliže atmosferskemu pritisku. Se pravi, da pretvori gorivo v stanje, ki omogoča takojošno uporabo za pogon motorjev.

Pomembno je tudi stikalo, ki omogoča uporabniku preklopljanje na željeno gorivo, plin ali bencin. Običajno je tudi opremljen s svetilnimi diodami, ki označujejo nivo plina v rezervarju.

Potrebujemo tudi injektorje za dovajanje plina ter kontrolnik, ki elektronsko nadzoruje delovanja vbrizga. Kontrolnik namreč upravlja in nadzoruje injektorje na podlagi podatkov, ki jih dobi od senzorjev ter voznika. Večina kontrolnikov ima tudi vgradeno funkcijo, ki shranjuje vse napake, ki si jih kasneje lahko ogleda serviser. Injektorji so pritrjeni na injektorski opori. Iz uplinjevalca pride plin v plinskem stanju do injektorjev, ki ga vbrizgnejo v sesalni ventil motorja.

Potrebno je tudi mazanje ventilov. Za to skrbi poseben dodatek, ki maže ventile in jih obvaruje pred obrabo. En od mnogih dodatkov je Flash Lube Valve Saver Fluid in je koncentrirani nadomestek svincu. Plin je neosvinčeno gorivo, zato potrebujemo ta dodatek.

Kot zadnji del predelave je polnilni ventil. Uporabljamo ga za polnjenje tekočega plina v rezervoar za plin prek večfunkcijskega ventila. Nastavek je prilagojen polnilni pištoli, tako da se ob priključitvi samodejno odpre. Pri odklopu se samodejno zapre, kar preprečuje uhajanje plina [12, 13].

4.3 DODATKI H GORIVU

Kot smo že prej omenili, je dodatkov res veliko, zato se bomo osredotočili samo na nekatere.

Prvi taki dodatki so aditivi. Na tržišču najdemo veliko aditivov, a tukaj se bomo osredotočili samo na aditiv podjetja Syntek Globala, Xtreme Fuel Treatment (XFT). XFT vsebuje olje topne organsko-kovinske spojine, ki znižajo temperaturo vžiga do 400 stopinj celzija. To pomeni, da ustvarja daljše gorenje in pri bencinskih motorjih zmanjšuje pojav predvžiga. Aditiv vsebuje tudi detergent, ki skrbi za čistočo motorja in
tako izboljša učinkovitost ter izkoristek. Za verodostojnost podatkov je podjetje objavilo na spletu vso dokumentacijo raznih testiranj in poskusov. Vendar moramo biti pozorni, saj iz dokumentov ne moremo razbrati, ali so bili testi opravljeni znotraj podjetja pri svojih prevoznikih ali ne [14].

Poleg aditivov poznamo tudi tablete, ki zmanjšujejo porabo. Podjetja trdijo, da z uporabo tablete, ki jo raztopimo v vodi, lahko zmanjšamo porabo goriva tudi do 32 %. Vendar to ne drži. Podjetje Viator&Vektor je te tablete preizkusilo in ugotovilo, da niso prinesle obljubljenih rezultatov. Takšne tablete kot tudi aditivi pri porabi ne pokažejo bistvenih sprememb, se pa pozitivno izkažejo pri manjši količini izpušnih plinov [15].

Eden izmed dodatkov je vodik. To se ne nanaša na vodikov pogon, ampak na gorivne celice z eksplozivnim vodikom. V avtomobilu je dodana posoda z vodo, v kateri poteka elektroliza. Pri elektrolizi vode se izločata plina kisik in vodik. Ta nastali vodik se zmeša z zrakom in s tem v valjih poveča eksplozivnost mešanice goriva ter zraka. To pomeni, da bi motor moral proizvajati več moči pri isti ali celo manjši porabi goriva. Vendar je v praksi nekoliko drugače. Pri uporabi vodika kot dodatka h gorivu se moč motorja bistveno ne spremeni. Tudi poraba goriva je enaka. Pozitivna lastnost je, da ima motor čistejši izpuh, saj se izpust CO plinov zmanjša [16].

4.4 TURBO POLNILNIK

Turbo polnilniki uporabljajo energijo izpušnih plinov. Izpušni plini zapustijo valj motorja s tlakom in temperaturo bistveno višjo kot v okolici. To pomeni, da to energijo še lahko uporabimo ter pretvorimo v mehansko delo. V nasportnem primeru bi imeli še večje izgube motorjev z notranjim zgorevanjem.

Poznamo več vrst polnilnikov. Najbolj znani je centrifugalni polnilnik, poleg njega pa še poznamo rotacijskega ter Rootsovo pihalo. Osredotočili se bomo samo na polnilnike gnane s pomočjo izpušnih plinov. Od vseh vrst polnilnikov se največkrat uporablja centrifugalni kompresor.

Slika 4.2: Delovanje turbo polnilnika [17].

4.5 ALTERNATIVNA GORIVA

Poznamo več alternativnih goriv, a osredotočili se bomo samo na najbolj znane. Poznamo jih tudi pod kratico BTL (Biomass to Liquid). To so vsa alternativna goriva, ki jih lahko uporabljamo v motorjih z notranjim zgorevanjem. Sem spadajo bioetanol, biometanol ter biodizel. Pozitivna lastnost biogoriv je ta, da pri zgorevanju nastaja le plin CO₂, ki pa ga rastline potrebujejo za rast. To pomeni, da bi lahko rekli, da so ta goriva skoraj CO₂ nevtralna, saj atmosfere ne obremenjujejo z dodatnim ogljikovim dioksidom.

Za proizvodnjo biogoriv potrebujemo obdelovalne površine. Ta goriva so namreč rastlinskega izvora, kar prinaša negativne posledice. Že za samo obdelovanje površin potrebujemo energijo (tractor), potem tudi s škropljenjem proti škodljivcem negativno vplivamo na okolje [4].
5 VKLJUČEVANJE MOTORJEV K POUKU TEHNIKE IN TEHNOLOGIJE

V tem poglavju bomo pregledali gradivo na temo MNZ, ki je zajeto v osnovnošolskih učbenikih za osmi razred osnovne šole.

5.1 UČBENIK TEHNIKA IN TEHNOLOGIJA 8

Poleg manjkajočih osnovnih stvari o MNZ pogrešamo tudi zanimivosti in novosti, ki so jih tekom razvoja motorjev spreminjali ter izpopolnjevali.

5.2 UČBENIK TEHNIKA 8

Naslednji učbenik [19] pa je Tehnika 8. V njem zasledimo malo bolj podrobnno razlago delovanja MNZ.

Pri učbeniku nas zmoti, da dizelske motorje obravnavajo kot motorje prihodnosti. S to izjavo ugotovimo, da je učbenik zelo zastarel. Med navedenim pogrešamo razne zanimivosti, kot so hibridni motorji, motorji na plin ... ter vse ostale napredne tehnologije, ki izboljšujejo delovanje MNZ.
5.3 UČBENIK TEHNIKA IN TEHNOLOGIJA 8

Tudi v tem učbeniku ni zaslediti nobene novosti in naprednih tehnologij.

6 NACIONALNO PREVERJANJE ZNANJA

Nacionalno preverjanje znanja (NPZ) se izvaja dvakrat. Prvič se izvaja po drugem obdobju (6. razred), potem pa še po tretjem obdobju (9. razred). Tudi pri NPZ zasledimo naloge na temo MNZ. Nas predvsem zanima, koliko je takšnih nalog, kakšna je njihova taksonomska stopnja težavnosti in doseženi rezultati učencev.

6.1 PREGLED NALOG

6.6.1 Redni rok leta 2008

10. naloga

Delovanje štiritaktnega motorja poteka v krožnem procesu posameznih taktov. Kako imenujemo drugi takt v krožnem procesu?

Obkroži črko pred pravilnim odgovorom.

A Izpušni takt.
B Vžig zmesi (delovni takt).
C Sesalni takt.
D Takt stiskanja (kompresija).

Slika 6.1: Redni rok 2008 [21].

6.6.2 Naknadni rok leta 2008

6.6.3 Redni rok leta 2010

Pri tem roku ni nobene naloge na temo MNZ.

6.6.4 Naknadni rok leta 2010

6.6.5 Redni rok leta 2013

V letošnjem letu je bila pri rednem roku naloga (slika 6.4) na temo MNZ. Naloga je II taksonomske stopnje zahtevnosti, saj od učenca zahteva razumevanje in uporabo znanja. Naloga je alternativnega in izbirnega tipa. Naloga je razdeljena na dva dela. Pravilni odgovori so a) DA, DA, NE in b) B. Za a) del naloge dobi učenec eno točko, če ima pravilne vse tri dopolnitve. Za b) del naloge dobi prav tako eno točko, kar znaša skupaj dve točki.
6.6.6 Naknadni rok leta 2013

Naloga (slika 6.5) je zelo podobna nalogi iz rednega roka leta 2013. Tudi ta naloga je II taksonomske stopnje po Bloomu in je alternativnega in izbirnega tipa. Naloga je razdeljena na dva dela. Za vsak pravilni del dobi učenec po eno točko. Rešitev za prvi del je a) NE, NE, DA in drugi del b) D.

 a) Za naslednje trditve na črto napiši DA, če je trditev pravilna, in NE, če je trditev napačna:
 Masa dvotaktnega motorja je večja od mase štiritaktnega motorja. ______
 Izkoristek dvotaktnega motorja je večji od izkoristka štiritaktnega motorja. ______
 Pri dvotaktnem motorju je gorivu treba dodajati strojno olje. ______

 b) Če je štiritaktni motor trenutno v fazi izpuha, kateri takti mu sledijo?
 Obkroži črko pred pravilnim odgovorom.
 A. Sesanje, zgorevanje in razširjanje, stiskanje.
 B. Zgorevanje in razširjanje, stiskanje, sesanje.
 C. Stiskanje, zgorevanje in razširjanje, sesanje.
 D. Sesanje, stiskanje, zgorevanje in razširjanje.

Slika 6.5: Naknadni rok 2013 [21].

6.2 REZULTATI NALOG

Na spletni strani državnega izpitnega centra so dostopni vsi rezultati NPZ-jev. Podrobne rešitve za posamezne naloge smo dobili samo za redni rok iz leta 2013. To pomeni, da bomo lahko preverili uspešnost učencev samo za letosno leto. Osredotočili se bomo samo na temo MNZ.

Iz preglednice 6.1 lahko razberemo indeks težavnosti, ki nam pove, koliko učencev je nalogo rešilo pravilno. Če je indeks $< 0,33$, potem je naloga zahtevna, če pa je indeks $> 0,80$ potem pa je naloga lahka. Pri obeh delih naloge sta indeksa relativno nizka, kar pomeni, da je zelo malo učencev rešilo nalogo pravilno. To pomeni, sta oba dela naloge zahtevna.

Indeks diskriminativnosti učence razdeli na bolj uspešne in na manj uspešne. Če je indeks $< 0,2$, potem pomeni, da naloga zelo slabo razdeli učence po uspešnosti, če je indeks med 0,2 in 0,4, potem naloga dobro razdeli učence, če je indeks $> 0,4$ potem pa naloga zelo dobro loči boljše učence od slabših.

Pri prvem delu naloge je indeks diskriminativnosti enak 0,11, kar pomeni, da naloga zelo slabo loči učence. To pomeni, da so to nalogo pravilno rešili tako boljši učenci kot tudi slabši.

Pri drugem delu naloge je indeks enak 0,37, kar pomeni, da naloga dobro loči učence. To pomeni, da so ta nalogo pravilno rešili samo boljši učenci.

To nalogo so večinoma pravilno rešili samo boljši učenci.

6.3 VZROKI ZA USPEŠNOST/NEUSPEŠNOST

Ker imamo rezultate NPZ-jev samo za redni rok letošnjega leta, zelo težko najdemo vzrok za tako slabe rezultate. Naloga je bila II taksonomske stopnje po Bloomu, kar pomeni, da učenci ne razumejo snovi in je ne znajo uporabiti v vsakdanjem življenju.

Sklepamo lahko tudi, da za tako slab znanje niso krivi samo učenci, ampak tudi učitelji tehnike in tehnologije. Učencu je potrebno snov razložiti tako, da jo ta razume in jo zna uporabiti v vsakdanjem življenju. Za III taksonomsko stopnjo je potrebno učenca postaviti v konkretno situacijo s problemom, ki ga mora rešiti.
Učencu je potrebno narediti snov zanimivo, kar pomeni, da mora učitelj slediti novostim na tem področju. Tu se že pokaže prva težava, saj so osnovnošolski učbeniki za osmi razred zastareli, kar smo ugotovili v poglavju 5.

8 DISKUSIJA

9 ZAKLJUČEK

To naš domnevo smo preverili z analizo nacionalnega preverjanja znanja. Ugotovili smo, da je učenčevo znanje o motorjih zelo šibko. Sklepamo lahko, da so za to krivi učitelji in zastareli učbeniki. Ta problem bi lahko rešili z izboljšanimi učbeniki, ki bi dobro pokrivali temo motorjev z notranjim zgorevanjem.
10 LITERATURA IN VIRI

